New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Fix time type _arrow_to_datasets_dtype
conversion
#4628
Merged
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Show benchmarks
PyArrow==6.0.0
Show updated benchmarks!
Benchmark: benchmark_array_xd.json
metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
new / old (diff) | 0.008753 / 0.011353 (-0.002600) | 0.004159 / 0.011008 (-0.006850) | 0.029933 / 0.038508 (-0.008575) | 0.035409 / 0.023109 (0.012300) | 0.307991 / 0.275898 (0.032093) | 0.332821 / 0.323480 (0.009341) | 0.006628 / 0.007986 (-0.001357) | 0.004980 / 0.004328 (0.000652) | 0.007406 / 0.004250 (0.003156) | 0.038529 / 0.037052 (0.001477) | 0.285959 / 0.258489 (0.027470) | 0.343784 / 0.293841 (0.049943) | 0.031949 / 0.128546 (-0.096597) | 0.009837 / 0.075646 (-0.065809) | 0.252360 / 0.419271 (-0.166912) | 0.052521 / 0.043533 (0.008988) | 0.292870 / 0.255139 (0.037731) | 0.314168 / 0.283200 (0.030968) | 0.092384 / 0.141683 (-0.049299) | 1.817181 / 1.452155 (0.365026) | 1.895129 / 1.492716 (0.402413) |
Benchmark: benchmark_getitem_100B.json
metric | get_batch_of_1024_random_rows | get_batch_of_1024_rows | get_first_row | get_last_row |
---|---|---|---|---|
new / old (diff) | 0.329868 / 0.018006 (0.311862) | 0.578615 / 0.000490 (0.578125) | 0.020492 / 0.000200 (0.020292) | 0.000150 / 0.000054 (0.000095) |
Benchmark: benchmark_indices_mapping.json
metric | select | shard | shuffle | sort | train_test_split |
---|---|---|---|---|---|
new / old (diff) | 0.026803 / 0.037411 (-0.010608) | 0.109268 / 0.014526 (0.094742) | 0.116576 / 0.176557 (-0.059980) | 0.162952 / 0.737135 (-0.574184) | 0.119381 / 0.296338 (-0.176957) |
Benchmark: benchmark_iterating.json
metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
new / old (diff) | 0.420224 / 0.215209 (0.205015) | 4.183476 / 2.077655 (2.105822) | 1.795067 / 1.504120 (0.290947) | 1.592892 / 1.541195 (0.051697) | 1.715241 / 1.468490 (0.246751) | 0.438456 / 4.584777 (-4.146321) | 4.822341 / 3.745712 (1.076628) | 2.222622 / 5.269862 (-3.047240) | 0.942113 / 4.565676 (-3.623563) | 0.052940 / 0.424275 (-0.371335) | 0.012035 / 0.007607 (0.004428) | 0.518633 / 0.226044 (0.292589) | 5.202614 / 2.268929 (2.933686) | 2.214123 / 55.444624 (-53.230501) | 1.887806 / 6.876477 (-4.988670) | 2.059426 / 2.142072 (-0.082647) | 0.561196 / 4.805227 (-4.244032) | 0.122998 / 6.500664 (-6.377667) | 0.062548 / 0.075469 (-0.012921) |
Benchmark: benchmark_map_filter.json
metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |
---|---|---|---|---|---|---|---|---|---|
new / old (diff) | 1.613139 / 1.841788 (-0.228648) | 14.902228 / 8.074308 (6.827920) | 26.542624 / 10.191392 (16.351232) | 0.871870 / 0.680424 (0.191447) | 0.528610 / 0.534201 (-0.005591) | 0.494000 / 0.579283 (-0.085283) | 0.515395 / 0.434364 (0.081031) | 0.329894 / 0.540337 (-0.210443) | 0.348506 / 1.386936 (-1.038430) |
Show updated benchmarks!
Benchmark: benchmark_array_xd.json
metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
new / old (diff) | 0.008817 / 0.011353 (-0.002535) | 0.004320 / 0.011008 (-0.006688) | 0.029670 / 0.038508 (-0.008838) | 0.035356 / 0.023109 (0.012247) | 0.314365 / 0.275898 (0.038467) | 0.329691 / 0.323480 (0.006211) | 0.006897 / 0.007986 (-0.001088) | 0.003889 / 0.004328 (-0.000439) | 0.007736 / 0.004250 (0.003486) | 0.040925 / 0.037052 (0.003873) | 0.293496 / 0.258489 (0.035007) | 0.336601 / 0.293841 (0.042760) | 0.031702 / 0.128546 (-0.096844) | 0.009894 / 0.075646 (-0.065753) | 0.252631 / 0.419271 (-0.166641) | 0.052360 / 0.043533 (0.008827) | 0.298285 / 0.255139 (0.043146) | 0.324213 / 0.283200 (0.041014) | 0.097796 / 0.141683 (-0.043887) | 1.853045 / 1.452155 (0.400890) | 1.894968 / 1.492716 (0.402252) |
Benchmark: benchmark_getitem_100B.json
metric | get_batch_of_1024_random_rows | get_batch_of_1024_rows | get_first_row | get_last_row |
---|---|---|---|---|
new / old (diff) | 0.347924 / 0.018006 (0.329917) | 0.569546 / 0.000490 (0.569056) | 0.034078 / 0.000200 (0.033879) | 0.000433 / 0.000054 (0.000378) |
Benchmark: benchmark_indices_mapping.json
metric | select | shard | shuffle | sort | train_test_split |
---|---|---|---|---|---|
new / old (diff) | 0.028256 / 0.037411 (-0.009155) | 0.107045 / 0.014526 (0.092519) | 0.114863 / 0.176557 (-0.061694) | 0.156924 / 0.737135 (-0.580211) | 0.116138 / 0.296338 (-0.180201) |
Benchmark: benchmark_iterating.json
metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
new / old (diff) | 0.422840 / 0.215209 (0.207631) | 4.227137 / 2.077655 (2.149482) | 1.889461 / 1.504120 (0.385341) | 1.702655 / 1.541195 (0.161460) | 1.853991 / 1.468490 (0.385500) | 0.437951 / 4.584777 (-4.146826) | 4.613988 / 3.745712 (0.868276) | 3.711988 / 5.269862 (-1.557874) | 0.930517 / 4.565676 (-3.635159) | 0.053542 / 0.424275 (-0.370733) | 0.012215 / 0.007607 (0.004608) | 0.534874 / 0.226044 (0.308829) | 5.385805 / 2.268929 (3.116876) | 2.319419 / 55.444624 (-53.125205) | 2.015965 / 6.876477 (-4.860511) | 2.207421 / 2.142072 (0.065349) | 0.560491 / 4.805227 (-4.244736) | 0.124876 / 6.500664 (-6.375788) | 0.061886 / 0.075469 (-0.013583) |
Benchmark: benchmark_map_filter.json
metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |
---|---|---|---|---|---|---|---|---|---|
new / old (diff) | 1.612840 / 1.841788 (-0.228948) | 15.091749 / 8.074308 (7.017441) | 26.719293 / 10.191392 (16.527900) | 0.876356 / 0.680424 (0.195932) | 0.526170 / 0.534201 (-0.008031) | 0.494383 / 0.579283 (-0.084900) | 0.508831 / 0.434364 (0.074467) | 0.323148 / 0.540337 (-0.217189) | 0.333935 / 1.386936 (-1.053001) |
The documentation is not available anymore as the PR was closed or merged. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Fix #4620
The issue stems from the fact that
pa.array([time_data]).type
returnsDataType(time64[unit])
, which doesn't expose theunit
attribute, instead ofTime64Type(time64[unit])
. I believe this is a bug in PyArrow. Luckily, the both types have the samestr()
, so in this PR I callpa.type_for_alias(str(type))
to convert them both to theTime64Type(time64[unit])
format.cc @severo