This projects aims in detection of video deepfakes using deep learning techniques like RestNext and LSTM. We have achived deepfake detection by using transfer learning where the pretrained RestNext CNN is used to obtain a feature vector, further the LSTM layer is trained using the features. For more details follow the documentaion.
3D Passive Face Liveness Detection (Anti-Spoofing) & Deepfake detection. A single image is needed to compute liveness score. 99,67% accuracy on our dataset and perfect scores on multiple public datasets (NUAA, CASIA FASD, MSU...).
FakeFinder builds a modular framework for evaluating various deepfake detection models, offering a web application as well as API access for integration into existing workflows.