PEP: 696 Title: Type defaults for TypeVarLikes Author: James Hilton-Balfe <gobot1234yt@gmail.com> Sponsor: Jelle Zijlstra <jelle.zijlstra@gmail.com> Discussions-To: typing-sig@python.org Status: Draft Type: Standards Track Topic: Typing Content-Type: text/x-rst Created: 14-Jul-2022 Python-Version: 3.12
Abstract
This PEP introduces the concept of type defaults for
TypeVarLike
s (TypeVar
, ParamSpec
and TypeVarTuple
),
which act as defaults for a type parameter when one is not specified or
the constraint solver isn't able to solve a type parameter to anything.
Default type argument support is available in some popular languages such as C++, TypeScript, and Rust. A survey of type parameter syntax in some common languages has been conducted by the author of PEP 695 and can be found in its :pep:`Appendix A <695#appendix-a-survey-of-type-parameter-syntax>`.
Motivation
T = TypeVar("T", default=int) # This means that if no type is specified T = int
@dataclass
class Box(Generic[T]):
value: T | None = None
reveal_type(Box()) # type is Box[int]
reveal_type(Box(value="Hello World!")) # type is Box[str]
One place this regularly comes
up is Generator
. I
propose changing the stub definition to something like:
YieldT = TypeVar("YieldT")
SendT = TypeVar("SendT", default=None)
ReturnT = TypeVar("ReturnT", default=None)
class Generator(Generic[YieldT, SendT, ReturnT]): ...
Generator[int] == Generator[int, None] == Generator[int, None, None]
This is also useful for a Generic
that is commonly over one type.
class Bot: ...
BotT = TypeVar("BotT", bound=Bot, default=Bot)
class Context(Generic[BotT]):
bot: BotT
class MyBot(Bot): ...
reveal_type(Context().bot) # type is Bot # notice this is not Any which is what it would be currently
reveal_type(Context[MyBot]().bot) # type is MyBot
Not only does this improve typing for those who explicitly use it, it also helps non-typing users who rely on auto-complete to speed up their development.
- This design pattern is common in projects like:
- discord.py — where the example above was taken from.
- NumPy — the default for types
like
ndarray
'sdtype
would befloat64
. Currently it'sUnknown
orAny
. - TensorFlow — this
could be used for Tensor similarly to
numpy.ndarray
and would be useful to simplify the definition ofLayer
.
Specification
Default Ordering and Subscription Rules
The order for defaults should follow the standard function parameter
rules, so a TypeVarLike
with no default
cannot follow one with
a default
value. Doing so should ideally raise a TypeError
in
typing._GenericAlias
/types.GenericAlias
, and a type checker
should flag this an error.
DefaultStrT = TypeVar("DefaultStrT", default=str)
DefaultIntT = TypeVar("DefaultIntT", default=int)
DefaultBoolT = TypeVar("DefaultBoolT", default=bool)
T = TypeVar("T")
T2 = TypeVar("T2")
class NonDefaultFollowsDefault(Generic[DefaultStrT, T]): ... # Invalid: non-default TypeVars cannot follow ones with defaults
class NoNonDefaults(Generic[DefaultStrT, DefaultIntT]): ...
(
NoNoneDefaults ==
NoNoneDefaults[str] ==
NoNoneDefaults[str, int]
) # All valid
class OneDefault(Generic[T, DefaultBoolT]): ...
OneDefault[float] == OneDefault[float, bool] # Valid
class AllTheDefaults(Generic[T1, T2, DefaultStrT, DefaultIntT, DefaultBoolT]): ...
AllTheDefaults[int] # Invalid: expected 2 arguments to AllTheDefaults
(
AllTheDefaults[int, complex] ==
AllTheDefaults[int, complex, str] ==
AllTheDefaults[int, complex, str, int] ==
AllTheDefaults[int, complex, str, int, bool]
) # All valid
This cannot be enforced at runtime for functions, for now, but in the future, this might be possible (see Interaction with PEP 695).
ParamSpec
Defaults
ParamSpec
defaults are defined using the same syntax as
TypeVar
s but use a list
or tuple
of types or an ellipsis
literal "...
" or another in-scope ParamSpec
(see :ref:`scoping-rules`).
DefaultP = ParamSpec("DefaultP", default=(str, int))
class Foo(Generic[DefaultP]): ...
reveal_type(Foo()) # type is Foo[(str, int)]
reveal_type(Foo[(bool, bool)]()) # type is Foo[(bool, bool)]
TypeVarTuple
Defaults
TypeVarTuple
defaults are defined using the same syntax as
TypeVar
s but use an unpacked tuple of types instead of a single type
or another in-scope TypeVarTuple
(see :ref:`scoping-rules`).
DefaultTs = TypeVarTuple("DefaultTs", default=Unpack[tuple[str, int]])
class Foo(Generic[*DefaultTs]): ...
reveal_type(Foo()) # type is Foo[str, int]
reveal_type(Foo[int, bool]()) # type is Foo[int, bool]
TypeVarLike
as default
Using Another This allows for a value to be used again when the constraints solver fails to solve a constraint for a type, or the type parameter to a generic is missing but another type parameter is specified.
To use another TypeVarLike
as a default the default
and the
TypeVarLike
must be the same type (a TypeVar
's default must be
a TypeVar
, etc.).
This could be used on builtins.slice
where the start
parameter should default to int
, stop
default to the type of start
and step default to int | None
.
StartT = TypeVar("StartT", default=int)
StopT = TypeVar("StopT", default=StartT)
StepT = TypeVar("StepT", default=int | None)
class slice(Generic[StartT, StopT, StepT]): ...
reveal_type(slice()) # type is slice[int, int, int | None]
reveal_type(slice[str]()) # type is slice[str, str, int | None]
reveal_type(slice[str, bool, timedelta]()) # type is slice[str, bool, timedelta]
When using a TypeVarLike
as the default to another TypeVarLike
.
Where T1
is the default for T2
the following rules apply.
Scoping Rules
T1
must be used before T2
in the parameter list of the generic,
or be bound in an outer class or function scope.
DefaultT = TypeVar("DefaultT", default=T)
class Foo(Generic[T, DefaultT]): ... # Valid
def bar(x: T, y: DefaultT): ... # Valid
class Foo(Generic[T]):
class Bar(Generic[DefaultT]): ... # Valid
def outer(x: T):
def inner(y: DefaultT): ... # Valid
StartT = TypeVar("StartT", default="StopT") # Swapped defaults around from previous example
StopT = TypeVar("StopT", default=int)
class slice(Generic[StartT, StopT, StepT]): ...
# ^^^^^^ Invalid: ordering does not allow StopT to be bound
def baz(x: DefaultT, y: T): ...
# ^^^^^^^^ Invalid: ordering does not allow DefaultT to be bound
Bound Rules
T2
's bound must be a subtype of T1
's bound.
T = TypeVar("T", bound=float)
TypeVar("Ok", default=T, bound=int) # Valid
TypeVar("AlsoOk", default=T, bound=float) # Valid
TypeVar("Invalid", default=T, bound=str) # Invalid: str is not a subtype of float
Constraint Rules
The constraints of T2
must be a superset of the constraints of T1
.
T1 = TypeVar("T1", bound=int)
TypeVar("Invalid", float, str, default=T1) # Invalid: upper bound int is incompatible with constraints float or str
T1 = TypeVar("T1", int, str)
TypeVar("AlsoOk", int, str, bool, default=T1) # Valid
TypeVar("AlsoInvalid", bool, complex, default=T1) # Invalid: {bool, complex} is not a superset of {int, str}
TypeVarLike
s as Parameters to Generics
TypeVarLike
s are valid as parameters to generics inside of a
default
when the first parameter is in scope as determined by the
:ref:`previous section <scoping-rules>`.
T = TypeVar("T")
ListDefaultT = TypeVar("ListDefaultT", default=list[T])
class Bar(Generic[T, ListDefaultT]):
def __init__(self, x: T, y: ListDefaultT): ...
reveal_type(Bar[int]) # type is Bar[int, list[int]]
reveal_type(Bar[int, list[str]]) # type is Bar[int, list[str]]
reveal_type(Bar[int, str]) # type is Bar[int, str]
Specialisation Rules
TypeVarLike
s currently cannot be further subscripted. This might
change if Higher Kinded TypeVars
are implemented.
Generic
TypeAlias
es
Generic
TypeAlias
es should be able to be further subscripted
following normal subscription rules. If a TypeVarLike
has a default
that hasn't been overridden it should be treated like it was
substituted into the TypeAlias
. However, it can be specialised
further down the line.
class SomethingWithNoDefaults(Generic[T, T2]): ...
MyAlias: TypeAlias = SomethingWithNoDefaults[int, DefaultStrT] # Valid
reveal_type(MyAlias()) # type is SomethingWithNoDefaults[int, str]
reveal_type(MyAlias[bool]()) # type is SomethingWithNoDefaults[int, bool]
MyAlias[bool, int] # Invalid: too many arguments passed to MyAlias
Subclassing
Subclasses of Generic
s with TypeVarLike
s that have defaults
behave similarly to Generic
TypeAlias
es.
class SubclassMe(Generic[T, DefaultStrT]):
x: DefaultStrT
class Bar(SubclassMe[int, DefaultStrT]): ...
reveal_type(Bar()) # type is Bar[str]
reveal_type(Bar[bool]()) # type is Bar[bool]
class Foo(SubclassMe[float]): ...
reveal_type(Foo().x) # type is str
Foo[str] # Invalid: Foo cannot be further subscripted
class Baz(Generic[DefaultIntT, DefaultStrT]): ...
class Spam(Baz): ...
reveal_type(Spam()) # type is <subclass of Baz[int, str]>
bound
and default
Using If both bound
and default
are passed default
must be a
subtype of bound
. Otherwise the type checker should generate an
error.
TypeVar("Ok", bound=float, default=int) # Valid
TypeVar("Invalid", bound=str, default=int) # Invalid: the bound and default are incompatible
Constraints
For constrained TypeVar
s, the default needs to be one of the
constraints. A type checker should generate an error even if it is a
subtype of one of the constraints.
TypeVar("Ok", float, str, default=float) # Valid
TypeVar("Invalid", float, str, default=int) # Invalid: expected one of float or str got int
Function Defaults
TypeVarLike
s currently are not supported in the signatures of
functions as ensuring the default
is returned in every code path
where the TypeVarLike
can go unsolved is too hard to implement.
Implementation
At runtime, this would involve the following changes to the typing
module.
- The classes
TypeVar
,ParamSpec
, andTypeVarTuple
should expose the type passed todefault
. This would be available as a__default__
attribute, which would beNone
if no argument is passed andNoneType
ifdefault=None
.
The following changes would be required to both GenericAlias
es:
- logic to determine the defaults required for a subscription.
- ideally, logic to determine if subscription (like
Generic[T, DefaultT]
) would be valid.
A reference implementation of the type checker can be found at https://github.com/Gobot1234/mypy/tree/TypeVar-defaults
Interaction with PEP 695
If this PEP is accepted, the syntax proposed in PEP 695 will be extended to introduce a way to specify defaults for type parameters using the "=" operator inside of the square brackets like so:
# TypeVars
class Foo[T = str]: ...
def bar[U = int](): ...
# ParamSpecs
class Baz[**P = (int, str)]: ...
def spam[**Q = (bool,)](): ...
# TypeVarTuples
class Qux[*Ts = *tuple[int, bool]]: ...
def ham[*Us = *tuple[str]](): ...
# TypeAliases
type Foo[T, U = str] = Bar[T, U]
type Baz[**P = (int, str)] = Spam[**P]
type Qux[*Ts = *tuple[str]] = Ham[*Ts]
type Rab[U, T = str] = Bar[T, U]
This functionality was included in the initial draft of PEP 695 but was removed due to scope creep.
Grammar Changes
type_param: | a=NAME b=[type_param_bound] d=[type_param_default] | a=NAME c=[type_param_constraint] d=[type_param_default] | '*' a=NAME d=[type_param_default] | '**' a=NAME d=[type_param_default] type_param_default: | '=' e=expression | '=' e=starred_expression
This would mean that TypeVarLike
s with defaults proceeding those
with non-defaults can be checked at compile time.
Rejected Alternatives
TypeVarLike
s Defaults to Be Passed to type.__new__
's **kwargs
Allowing the T = TypeVar("T")
@dataclass
class Box(Generic[T], T=int):
value: T | None = None
While this is much easier to read and follows a similar rationale to the
TypeVar
unary
syntax, it would not be
backwards compatible as T
might already be passed to a
metaclass/superclass or support classes that don't subclass Generic
at runtime.
Ideally, if PEP 637 wasn't rejected, the following would be acceptable:
T = TypeVar("T")
@dataclass
class Box(Generic[T = int]):
value: T | None = None
Allowing Non-defaults to Follow Defaults
YieldT = TypeVar("YieldT", default=Any)
SendT = TypeVar("SendT", default=Any)
ReturnT = TypeVar("ReturnT")
class Coroutine(Generic[YieldT, SendT, ReturnT]): ...
Coroutine[int] == Coroutine[Any, Any, int]
Allowing non-defaults to follow defaults would alleviate the issues with
returning types like Coroutine
from functions where the most used
type argument is the last (the return). Allowing non-defaults to follow
defaults is too confusing and potentially ambiguous, even if only the
above two forms were valid. Changing the argument order now would also
break a lot of codebases. This is also solvable in most cases using a
TypeAlias
.
Coro: TypeAlias = Coroutine[Any, Any, T]
Coro[int] == Coroutine[Any, Any, int]
default
Implicitly Be bound
Having In an earlier version of this PEP, the default
was implicitly set
to bound
if no value was passed for default
. This while
convenient, could have a TypeVarLike
with no default follow a
TypeVarLike
with a default. Consider:
T = TypeVar("T", bound=int) # default is implicitly int
U = TypeVar("U")
class Foo(Generic[T, U]):
...
# would expand to
T = TypeVar("T", bound=int, default=int)
U = TypeVar("U")
class Foo(Generic[T, U]):
...
This would have also been a breaking change for a small number of cases
where the code relied on Any
being the implicit default.
Acknowledgements
Thanks to the following people for their feedback on the PEP:
Eric Traut, Jelle Zijlstra, Joshua Butt, Danny Yamamoto, Kaylynn Morgan and Jakub Kuczys
Copyright
This document is placed in the public domain or under the CC0-1.0-Universal license, whichever is more permissive.