Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
/**********************************************************************
random.c -
$Author$
created at: Fri Dec 24 16:39:21 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/internal/config.h"
#include <errno.h>
#include <limits.h>
#include <math.h>
#include <float.h>
#include <time.h>
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#include <sys/types.h>
#include <sys/stat.h>
#ifdef HAVE_FCNTL_H
# include <fcntl.h>
#endif
#if defined(HAVE_SYS_TIME_H)
# include <sys/time.h>
#endif
#ifdef HAVE_SYSCALL_H
# include <syscall.h>
#elif defined HAVE_SYS_SYSCALL_H
# include <sys/syscall.h>
#endif
#ifdef _WIN32
# include <winsock2.h>
# include <windows.h>
# include <wincrypt.h>
# include <bcrypt.h>
#endif
#if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__)
/* to define OpenBSD and FreeBSD for version check */
# include <sys/param.h>
#endif
#if defined HAVE_GETRANDOM || defined HAVE_GETENTROPY
# if defined(HAVE_SYS_RANDOM_H)
# include <sys/random.h>
# endif
#elif defined __linux__ && defined __NR_getrandom
# include <linux/random.h>
#endif
#if defined __APPLE__
# include <AvailabilityMacros.h>
#endif
#include "internal.h"
#include "internal/array.h"
#include "internal/compilers.h"
#include "internal/numeric.h"
#include "internal/random.h"
#include "internal/sanitizers.h"
#include "internal/variable.h"
#include "ruby_atomic.h"
#include "ruby/random.h"
#include "ruby/ractor.h"
typedef int int_must_be_32bit_at_least[sizeof(int) * CHAR_BIT < 32 ? -1 : 1];
#include "missing/mt19937.c"
/* generates a random number on [0,1) with 53-bit resolution*/
static double int_pair_to_real_exclusive(uint32_t a, uint32_t b);
static double
genrand_real(struct MT *mt)
{
/* mt must be initialized */
unsigned int a = genrand_int32(mt), b = genrand_int32(mt);
return int_pair_to_real_exclusive(a, b);
}
static const double dbl_reduce_scale = /* 2**(-DBL_MANT_DIG) */
(1.0
/ (double)(DBL_MANT_DIG > 2*31 ? (1ul<<31) : 1.0)
/ (double)(DBL_MANT_DIG > 1*31 ? (1ul<<31) : 1.0)
/ (double)(1ul<<(DBL_MANT_DIG%31)));
static double
int_pair_to_real_exclusive(uint32_t a, uint32_t b)
{
static const int a_shift = DBL_MANT_DIG < 64 ?
(64-DBL_MANT_DIG)/2 : 0;
static const int b_shift = DBL_MANT_DIG < 64 ?
(65-DBL_MANT_DIG)/2 : 0;
a >>= a_shift;
b >>= b_shift;
return (a*(double)(1ul<<(32-b_shift))+b)*dbl_reduce_scale;
}
/* generates a random number on [0,1] with 53-bit resolution*/
static double int_pair_to_real_inclusive(uint32_t a, uint32_t b);
#if 0
static double
genrand_real2(struct MT *mt)
{
/* mt must be initialized */
uint32_t a = genrand_int32(mt), b = genrand_int32(mt);
return int_pair_to_real_inclusive(a, b);
}
#endif
/* These real versions are due to Isaku Wada, 2002/01/09 added */
#undef N
#undef M
typedef struct {
rb_random_t base;
struct MT mt;
} rb_random_mt_t;
#define DEFAULT_SEED_CNT 4
static VALUE rand_init(const rb_random_interface_t *, rb_random_t *, VALUE);
static VALUE random_seed(VALUE);
static void fill_random_seed(uint32_t *seed, size_t cnt);
static VALUE make_seed_value(uint32_t *ptr, size_t len);
RB_RANDOM_INTERFACE_DECLARE(rand_mt);
static const rb_random_interface_t random_mt_if = {
DEFAULT_SEED_CNT * 32,
RB_RANDOM_INTERFACE_DEFINE(rand_mt)
};
static rb_random_mt_t *
rand_mt_start(rb_random_mt_t *r)
{
if (!genrand_initialized(&r->mt)) {
r->base.seed = rand_init(&random_mt_if, &r->base, random_seed(Qundef));
}
return r;
}
static rb_random_t *
rand_start(rb_random_mt_t *r)
{
return &rand_mt_start(r)->base;
}
static rb_ractor_local_key_t default_rand_key;
static void
default_rand_mark(void *ptr)
{
rb_random_mt_t *rnd = (rb_random_mt_t *)ptr;
rb_gc_mark(rnd->base.seed);
}
static const struct rb_ractor_local_storage_type default_rand_key_storage_type = {
default_rand_mark,
ruby_xfree,
};
static rb_random_mt_t *
default_rand(void)
{
rb_random_mt_t *rnd;
if ((rnd = rb_ractor_local_storage_ptr(default_rand_key)) == NULL) {
rnd = ZALLOC(rb_random_mt_t);
rb_ractor_local_storage_ptr_set(default_rand_key, rnd);
}
return rnd;
}
static rb_random_mt_t *
default_mt(void)
{
return rand_mt_start(default_rand());
}
unsigned int
rb_genrand_int32(void)
{
struct MT *mt = &default_mt()->mt;
return genrand_int32(mt);
}
double
rb_genrand_real(void)
{
struct MT *mt = &default_mt()->mt;
return genrand_real(mt);
}
#define SIZEOF_INT32 (31/CHAR_BIT + 1)
static double
int_pair_to_real_inclusive(uint32_t a, uint32_t b)
{
double r;
enum {dig = DBL_MANT_DIG};
enum {dig_u = dig-32, dig_r64 = 64-dig, bmask = ~(~0u<<(dig_r64))};
#if defined HAVE_UINT128_T
const uint128_t m = ((uint128_t)1 << dig) | 1;
uint128_t x = ((uint128_t)a << 32) | b;
r = (double)(uint64_t)((x * m) >> 64);
#elif defined HAVE_UINT64_T && !MSC_VERSION_BEFORE(1300)
uint64_t x = ((uint64_t)a << dig_u) +
(((uint64_t)b + (a >> dig_u)) >> dig_r64);
r = (double)x;
#else
/* shift then add to get rid of overflow */
b = (b >> dig_r64) + (((a >> dig_u) + (b & bmask)) >> dig_r64);
r = (double)a * (1 << dig_u) + b;
#endif
return r * dbl_reduce_scale;
}
VALUE rb_cRandom;
#define id_minus '-'
#define id_plus '+'
static ID id_rand, id_bytes;
NORETURN(static void domain_error(void));
/* :nodoc: */
#define random_mark rb_random_mark
void
random_mark(void *ptr)
{
rb_gc_mark(((rb_random_t *)ptr)->seed);
}
#define random_free RUBY_TYPED_DEFAULT_FREE
static size_t
random_memsize(const void *ptr)
{
return sizeof(rb_random_t);
}
const rb_data_type_t rb_random_data_type = {
"random",
{
random_mark,
random_free,
random_memsize,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
#define random_mt_mark rb_random_mark
#define random_mt_free RUBY_TYPED_DEFAULT_FREE
static size_t
random_mt_memsize(const void *ptr)
{
return sizeof(rb_random_mt_t);
}
static const rb_data_type_t random_mt_type = {
"random/MT",
{
random_mt_mark,
random_mt_free,
random_mt_memsize,
},
&rb_random_data_type,
(void *)&random_mt_if,
RUBY_TYPED_FREE_IMMEDIATELY
};
static rb_random_t *
get_rnd(VALUE obj)
{
rb_random_t *ptr;
TypedData_Get_Struct(obj, rb_random_t, &rb_random_data_type, ptr);
if (RTYPEDDATA_TYPE(obj) == &random_mt_type)
return rand_start((rb_random_mt_t *)ptr);
return ptr;
}
static rb_random_mt_t *
get_rnd_mt(VALUE obj)
{
rb_random_mt_t *ptr;
TypedData_Get_Struct(obj, rb_random_mt_t, &random_mt_type, ptr);
return ptr;
}
static rb_random_t *
try_get_rnd(VALUE obj)
{
if (obj == rb_cRandom) {
return rand_start(default_rand());
}
if (!rb_typeddata_is_kind_of(obj, &rb_random_data_type)) return NULL;
if (RTYPEDDATA_TYPE(obj) == &random_mt_type)
return rand_start(DATA_PTR(obj));
rb_random_t *rnd = DATA_PTR(obj);
if (!rnd) {
rb_raise(rb_eArgError, "uninitialized random: %s",
RTYPEDDATA_TYPE(obj)->wrap_struct_name);
}
return rnd;
}
static const rb_random_interface_t *
try_rand_if(VALUE obj, rb_random_t *rnd)
{
if (rnd == &default_rand()->base) {
return &random_mt_if;
}
return rb_rand_if(obj);
}
/* :nodoc: */
void
rb_random_base_init(rb_random_t *rnd)
{
rnd->seed = INT2FIX(0);
}
/* :nodoc: */
static VALUE
random_alloc(VALUE klass)
{
rb_random_mt_t *rnd;
VALUE obj = TypedData_Make_Struct(klass, rb_random_mt_t, &random_mt_type, rnd);
rb_random_base_init(&rnd->base);
return obj;
}
static VALUE
rand_init_default(const rb_random_interface_t *rng, rb_random_t *rnd)
{
VALUE seed, buf0 = 0;
size_t len = roomof(rng->default_seed_bits, 32);
uint32_t *buf = ALLOCV_N(uint32_t, buf0, len+1);
fill_random_seed(buf, len);
rng->init(rnd, buf, len);
seed = make_seed_value(buf, len);
explicit_bzero(buf, len * sizeof(*buf));
ALLOCV_END(buf0);
return seed;
}
static VALUE
rand_init(const rb_random_interface_t *rng, rb_random_t *rnd, VALUE seed)
{
uint32_t *buf;
VALUE buf0 = 0;
size_t len;
int sign;
len = rb_absint_numwords(seed, 32, NULL);
if (len == 0) len = 1;
buf = ALLOCV_N(uint32_t, buf0, len);
sign = rb_integer_pack(seed, buf, len, sizeof(uint32_t), 0,
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
if (sign < 0)
sign = -sign;
if (len <= 1) {
rng->init_int32(rnd, len ? buf[0] : 0);
}
else {
if (sign != 2 && buf[len-1] == 1) /* remove leading-zero-guard */
len--;
rng->init(rnd, buf, len);
}
explicit_bzero(buf, len * sizeof(*buf));
ALLOCV_END(buf0);
return seed;
}
/*
* call-seq:
* Random.new(seed = Random.new_seed) -> prng
*
* Creates a new PRNG using +seed+ to set the initial state. If +seed+ is
* omitted, the generator is initialized with Random.new_seed.
*
* See Random.srand for more information on the use of seed values.
*/
static VALUE
random_init(int argc, VALUE *argv, VALUE obj)
{
rb_random_t *rnd = try_get_rnd(obj);
const rb_random_interface_t *rng = rb_rand_if(obj);
if (!rng) {
rb_raise(rb_eTypeError, "undefined random interface: %s",
RTYPEDDATA_TYPE(obj)->wrap_struct_name);
}
unsigned int major = rng->version.major;
unsigned int minor = rng->version.minor;
if (major != RUBY_RANDOM_INTERFACE_VERSION_MAJOR) {
rb_raise(rb_eTypeError, "Random interface version "
STRINGIZE(RUBY_RANDOM_INTERFACE_VERSION_MAJOR) "."
STRINGIZE(RUBY_RANDOM_INTERFACE_VERSION_MINOR) " "
"expected: %d.%d", major, minor);
}
argc = rb_check_arity(argc, 0, 1);
rb_check_frozen(obj);
if (argc == 0) {
rnd->seed = rand_init_default(rng, rnd);
}
else {
rnd->seed = rand_init(rng, rnd, rb_to_int(argv[0]));
}
return obj;
}
#define DEFAULT_SEED_LEN (DEFAULT_SEED_CNT * (int)sizeof(int32_t))
#if defined(S_ISCHR) && !defined(DOSISH)
# define USE_DEV_URANDOM 1
#else
# define USE_DEV_URANDOM 0
#endif
#ifdef HAVE_GETENTROPY
# define MAX_SEED_LEN_PER_READ 256
static int
fill_random_bytes_urandom(void *seed, size_t size)
{
unsigned char *p = (unsigned char *)seed;
while (size) {
size_t len = size < MAX_SEED_LEN_PER_READ ? size : MAX_SEED_LEN_PER_READ;
if (getentropy(p, len) != 0) {
return -1;
}
p += len;
size -= len;
}
return 0;
}
#elif USE_DEV_URANDOM
static int
fill_random_bytes_urandom(void *seed, size_t size)
{
/*
O_NONBLOCK and O_NOCTTY is meaningless if /dev/urandom correctly points
to a urandom device. But it protects from several strange hazard if
/dev/urandom is not a urandom device.
*/
int fd = rb_cloexec_open("/dev/urandom",
# ifdef O_NONBLOCK
O_NONBLOCK|
# endif
# ifdef O_NOCTTY
O_NOCTTY|
# endif
O_RDONLY, 0);
struct stat statbuf;
ssize_t ret = 0;
size_t offset = 0;
if (fd < 0) return -1;
rb_update_max_fd(fd);
if (fstat(fd, &statbuf) == 0 && S_ISCHR(statbuf.st_mode)) {
do {
ret = read(fd, ((char*)seed) + offset, size - offset);
if (ret < 0) {
close(fd);
return -1;
}
offset += (size_t)ret;
} while (offset < size);
}
close(fd);
return 0;
}
#else
# define fill_random_bytes_urandom(seed, size) -1
#endif
#if ! defined HAVE_GETRANDOM && defined __linux__ && defined __NR_getrandom
# ifndef GRND_NONBLOCK
# define GRND_NONBLOCK 0x0001 /* not defined in musl libc */
# endif
# define getrandom(ptr, size, flags) \
(ssize_t)syscall(__NR_getrandom, (ptr), (size), (flags))
# define HAVE_GETRANDOM 1
#endif
#if 0
#elif defined MAC_OS_X_VERSION_10_7 && MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_7
# if defined(USE_COMMON_RANDOM)
# elif defined MAC_OS_X_VERSION_10_10 && MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_10
# define USE_COMMON_RANDOM 1
# else
# define USE_COMMON_RANDOM 0
# endif
# if USE_COMMON_RANDOM
# include <CommonCrypto/CommonCryptoError.h> /* for old Xcode */
# include <CommonCrypto/CommonRandom.h>
# else
# include <Security/SecRandom.h>
# endif
static int
fill_random_bytes_syscall(void *seed, size_t size, int unused)
{
#if USE_COMMON_RANDOM
CCRNGStatus status = CCRandomGenerateBytes(seed, size);
int failed = status != kCCSuccess;
#else
int status = SecRandomCopyBytes(kSecRandomDefault, size, seed);
int failed = status != errSecSuccess;
#endif
if (failed) {
# if 0
# if USE_COMMON_RANDOM
/* How to get the error message? */
fprintf(stderr, "CCRandomGenerateBytes failed: %d\n", status);
# else
CFStringRef s = SecCopyErrorMessageString(status, NULL);
const char *m = s ? CFStringGetCStringPtr(s, kCFStringEncodingUTF8) : NULL;
fprintf(stderr, "SecRandomCopyBytes failed: %d: %s\n", status,
m ? m : "unknown");
if (s) CFRelease(s);
# endif
# endif
return -1;
}
return 0;
}
#elif defined(HAVE_ARC4RANDOM_BUF)
static int
fill_random_bytes_syscall(void *buf, size_t size, int unused)
{
#if (defined(__OpenBSD__) && OpenBSD >= 201411) || \
(defined(__NetBSD__) && __NetBSD_Version__ >= 700000000) || \
(defined(__FreeBSD__) && __FreeBSD_version >= 1200079)
arc4random_buf(buf, size);
return 0;
#else
return -1;
#endif
}
#elif defined(_WIN32)
#ifndef DWORD_MAX
# define DWORD_MAX (~(DWORD)0UL)
#endif
# if defined(CRYPT_VERIFYCONTEXT)
STATIC_ASSERT(sizeof_HCRYPTPROV, sizeof(HCRYPTPROV) == sizeof(size_t));
/* Although HCRYPTPROV is not a HANDLE, it looks like
* INVALID_HANDLE_VALUE is not a valid value */
static const HCRYPTPROV INVALID_HCRYPTPROV = (HCRYPTPROV)INVALID_HANDLE_VALUE;
static void
release_crypt(void *p)
{
HCRYPTPROV *ptr = p;
HCRYPTPROV prov = (HCRYPTPROV)ATOMIC_SIZE_EXCHANGE(*ptr, INVALID_HCRYPTPROV);
if (prov && prov != INVALID_HCRYPTPROV) {
CryptReleaseContext(prov, 0);
}
}
static int
fill_random_bytes_crypt(void *seed, size_t size)
{
static HCRYPTPROV perm_prov;
HCRYPTPROV prov = perm_prov, old_prov;
if (!prov) {
if (!CryptAcquireContext(&prov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
prov = INVALID_HCRYPTPROV;
}
old_prov = (HCRYPTPROV)ATOMIC_SIZE_CAS(perm_prov, 0, prov);
if (LIKELY(!old_prov)) { /* no other threads acquired */
if (prov != INVALID_HCRYPTPROV) {
#undef RUBY_UNTYPED_DATA_WARNING
#define RUBY_UNTYPED_DATA_WARNING 0
rb_gc_register_mark_object(Data_Wrap_Struct(0, 0, release_crypt, &perm_prov));
}
}
else { /* another thread acquired */
if (prov != INVALID_HCRYPTPROV) {
CryptReleaseContext(prov, 0);
}
prov = old_prov;
}
}
if (prov == INVALID_HCRYPTPROV) return -1;
while (size > 0) {
DWORD n = (size > (size_t)DWORD_MAX) ? DWORD_MAX : (DWORD)size;
if (!CryptGenRandom(prov, n, seed)) return -1;
seed = (char *)seed + n;
size -= n;
}
return 0;
}
# else
# define fill_random_bytes_crypt(seed, size) -1
# endif
static int
fill_random_bytes_bcrypt(void *seed, size_t size)
{
while (size > 0) {
ULONG n = (size > (size_t)ULONG_MAX) ? LONG_MAX : (ULONG)size;
if (BCryptGenRandom(NULL, seed, n, BCRYPT_USE_SYSTEM_PREFERRED_RNG))
return -1;
seed = (char *)seed + n;
size -= n;
}
return 0;
}
static int
fill_random_bytes_syscall(void *seed, size_t size, int unused)
{
if (fill_random_bytes_bcrypt(seed, size) == 0) return 0;
return fill_random_bytes_crypt(seed, size);
}
#elif defined HAVE_GETRANDOM
static int
fill_random_bytes_syscall(void *seed, size_t size, int need_secure)
{
static rb_atomic_t try_syscall = 1;
if (try_syscall) {
size_t offset = 0;
int flags = 0;
if (!need_secure)
flags = GRND_NONBLOCK;
do {
errno = 0;
ssize_t ret = getrandom(((char*)seed) + offset, size - offset, flags);
if (ret == -1) {
ATOMIC_SET(try_syscall, 0);
return -1;
}
offset += (size_t)ret;
} while (offset < size);
return 0;
}
return -1;
}
#else
# define fill_random_bytes_syscall(seed, size, need_secure) -1
#endif
int
ruby_fill_random_bytes(void *seed, size_t size, int need_secure)
{
int ret = fill_random_bytes_syscall(seed, size, need_secure);
if (ret == 0) return ret;
return fill_random_bytes_urandom(seed, size);
}
#define fill_random_bytes ruby_fill_random_bytes
/* cnt must be 4 or more */
static void
fill_random_seed(uint32_t *seed, size_t cnt)
{
static rb_atomic_t n = 0;
#if defined HAVE_CLOCK_GETTIME
struct timespec tv;
#elif defined HAVE_GETTIMEOFDAY
struct timeval tv;
#endif
size_t len = cnt * sizeof(*seed);
memset(seed, 0, len);
fill_random_bytes(seed, len, FALSE);
#if defined HAVE_CLOCK_GETTIME
clock_gettime(CLOCK_REALTIME, &tv);
seed[0] ^= tv.tv_nsec;
#elif defined HAVE_GETTIMEOFDAY
gettimeofday(&tv, 0);
seed[0] ^= tv.tv_usec;
#endif
seed[1] ^= (uint32_t)tv.tv_sec;
#if SIZEOF_TIME_T > SIZEOF_INT
seed[0] ^= (uint32_t)((time_t)tv.tv_sec >> SIZEOF_INT * CHAR_BIT);
#endif
seed[2] ^= getpid() ^ (ATOMIC_FETCH_ADD(n, 1) << 16);
seed[3] ^= (uint32_t)(VALUE)&seed;
#if SIZEOF_VOIDP > SIZEOF_INT
seed[2] ^= (uint32_t)((VALUE)&seed >> SIZEOF_INT * CHAR_BIT);
#endif
}
static VALUE
make_seed_value(uint32_t *ptr, size_t len)
{
VALUE seed;
if (ptr[len-1] <= 1) {
/* set leading-zero-guard */
ptr[len++] = 1;
}
seed = rb_integer_unpack(ptr, len, sizeof(uint32_t), 0,
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
return seed;
}
#define with_random_seed(size, add) \
for (uint32_t seedbuf[(size)+(add)], loop = (fill_random_seed(seedbuf, (size)), 1); \
loop; explicit_bzero(seedbuf, (size)*sizeof(seedbuf[0])), loop = 0)
/*
* call-seq: Random.new_seed -> integer
*
* Returns an arbitrary seed value. This is used by Random.new
* when no seed value is specified as an argument.
*
* Random.new_seed #=> 115032730400174366788466674494640623225
*/
static VALUE
random_seed(VALUE _)
{
VALUE v;
with_random_seed(DEFAULT_SEED_CNT, 1) {
v = make_seed_value(seedbuf, DEFAULT_SEED_CNT);
}
return v;
}
/*
* call-seq: Random.urandom(size) -> string
*
* Returns a string, using platform providing features.
* Returned value is expected to be a cryptographically secure
* pseudo-random number in binary form.
* This method raises a RuntimeError if the feature provided by platform
* failed to prepare the result.
*
* In 2017, Linux manpage random(7) writes that "no cryptographic
* primitive available today can hope to promise more than 256 bits of
* security". So it might be questionable to pass size > 32 to this
* method.
*
* Random.urandom(8) #=> "\x78\x41\xBA\xAF\x7D\xEA\xD8\xEA"
*/
static VALUE
random_raw_seed(VALUE self, VALUE size)
{
long n = NUM2ULONG(size);
VALUE buf = rb_str_new(0, n);
if (n == 0) return buf;
if (fill_random_bytes(RSTRING_PTR(buf), n, TRUE))
rb_raise(rb_eRuntimeError, "failed to get urandom");
return buf;
}
/*
* call-seq: prng.seed -> integer
*
* Returns the seed value used to initialize the generator. This may be used to
* initialize another generator with the same state at a later time, causing it
* to produce the same sequence of numbers.
*
* prng1 = Random.new(1234)
* prng1.seed #=> 1234
* prng1.rand(100) #=> 47
*
* prng2 = Random.new(prng1.seed)
* prng2.rand(100) #=> 47
*/
static VALUE
random_get_seed(VALUE obj)
{
return get_rnd(obj)->seed;
}
/* :nodoc: */
static VALUE
rand_mt_copy(VALUE obj, VALUE orig)
{
rb_random_mt_t *rnd1, *rnd2;
struct MT *mt;
if (!OBJ_INIT_COPY(obj, orig)) return obj;
rnd1 = get_rnd_mt(obj);
rnd2 = get_rnd_mt(orig);
mt = &rnd1->mt;
*rnd1 = *rnd2;
mt->next = mt->state + numberof(mt->state) - mt->left + 1;
return obj;
}
static VALUE
mt_state(const struct MT *mt)
{
return rb_integer_unpack(mt->state, numberof(mt->state),
sizeof(*mt->state), 0,
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
}
/* :nodoc: */
static VALUE
rand_mt_state(VALUE obj)
{
rb_random_mt_t *rnd = get_rnd_mt(obj);
return mt_state(&rnd->mt);
}
/* :nodoc: */
static VALUE
random_s_state(VALUE klass)
{
return mt_state(&default_rand()->mt);
}
/* :nodoc: */
static VALUE
rand_mt_left(VALUE obj)
{
rb_random_mt_t *rnd = get_rnd_mt(obj);
return INT2FIX(rnd->mt.left);
}
/* :nodoc: */
static VALUE
random_s_left(VALUE klass)
{
return INT2FIX(default_rand()->mt.left);
}
/* :nodoc: */
static VALUE
rand_mt_dump(VALUE obj)
{
rb_random_mt_t *rnd = rb_check_typeddata(obj, &random_mt_type);
VALUE dump = rb_ary_new2(3);
rb_ary_push(dump, mt_state(&rnd->mt));
rb_ary_push(dump, INT2FIX(rnd->mt.left));
rb_ary_push(dump, rnd->base.seed);
return dump;
}
/* :nodoc: */
static VALUE
rand_mt_load(VALUE obj, VALUE dump)
{
rb_random_mt_t *rnd = rb_check_typeddata(obj, &random_mt_type);
struct MT *mt = &rnd->mt;
VALUE state, left = INT2FIX(1), seed = INT2FIX(0);
unsigned long x;
rb_check_copyable(obj, dump);
Check_Type(dump, T_ARRAY);
switch (RARRAY_LEN(dump)) {
case 3:
seed = RARRAY_AREF(dump, 2);
case 2:
left = RARRAY_AREF(dump, 1);
case 1:
state = RARRAY_AREF(dump, 0);
break;
default:
rb_raise(rb_eArgError, "wrong dump data");
}
rb_integer_pack(state, mt->state, numberof(mt->state),
sizeof(*mt->state), 0,
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
x = NUM2ULONG(left);
if (x > numberof(mt->state)) {
rb_raise(rb_eArgError, "wrong value");
}
mt->left = (unsigned int)x;
mt->next = mt->state + numberof(mt->state) - x + 1;
rnd->base.seed = rb_to_int(seed);
return obj;
}
static void
rand_mt_init_int32(rb_random_t *rnd, uint32_t data)
{
struct MT *mt = &((rb_random_mt_t *)rnd)->mt;
init_genrand(mt, data);
}
static void
rand_mt_init(rb_random_t *rnd, const uint32_t *buf, size_t len)
{
struct MT *mt = &((rb_random_mt_t *)rnd)->mt;
init_by_array(mt, buf, (int)len);
}
static unsigned int
rand_mt_get_int32(rb_random_t *rnd)
{
struct MT *mt = &((rb_random_mt_t *)rnd)->mt;
return genrand_int32(mt);
}
static void
rand_mt_get_bytes(rb_random_t *rnd, void *ptr, size_t n)
{
rb_rand_bytes_int32(rand_mt_get_int32, rnd, ptr, n);
}
/*
* call-seq:
* srand(number = Random.new_seed) -> old_seed
*
* Seeds the system pseudo-random number generator, with +number+.
* The previous seed value is returned.
*
* If +number+ is omitted, seeds the generator using a source of entropy
* provided by the operating system, if available (/dev/urandom on Unix systems
* or the RSA cryptographic provider on Windows), which is then combined with
* the time, the process id, and a sequence number.
*
* srand may be used to ensure repeatable sequences of pseudo-random numbers
* between different runs of the program. By setting the seed to a known value,
* programs can be made deterministic during testing.
*
* srand 1234 # => 268519324636777531569100071560086917274
* [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
* [ rand(10), rand(1000) ] # => [4, 664]
* srand 1234 # => 1234
* [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
*/
static VALUE
rb_f_srand(int argc, VALUE *argv, VALUE obj)
{
VALUE seed, old;
rb_random_mt_t *r = rand_mt_start(default_rand());
if (rb_check_arity(argc, 0, 1) == 0) {
seed = random_seed(obj);
}
else {
seed = rb_to_int(argv[0]);
}
old = r->base.seed;
rand_init(&random_mt_if, &r->base, seed);
r->base.seed = seed;
return old;
}
static unsigned long
make_mask(unsigned long x)
{
x = x | x >> 1;
x = x | x >> 2;
x = x | x >> 4;
x = x | x >> 8;
x = x | x >> 16;
#if 4 < SIZEOF_LONG
x = x | x >> 32;
#endif
return x;
}
static unsigned long
limited_rand(const rb_random_interface_t *rng, rb_random_t *rnd, unsigned long limit)
{
/* mt must be initialized */
unsigned long val, mask;
if (!limit) return 0;
mask = make_mask(limit);
#if 4 < SIZEOF_LONG
if (0xffffffff < limit) {
int i;
retry:
val = 0;
for (i = SIZEOF_LONG/SIZEOF_INT32-1; 0 <= i; i--) {
if ((mask >> (i * 32)) & 0xffffffff) {
val |= (unsigned long)rng->get_int32(rnd) << (i * 32);
val &= mask;
if (limit < val)
goto retry;
}
}
return val;
}
#endif
do {
val = rng->get_int32(rnd) & mask;
} while (limit < val);
return val;
}
static VALUE
limited_big_rand(const rb_random_interface_t *rng, rb_random_t *rnd, VALUE limit)
{
/* mt must be initialized */
uint32_t mask;
long i;
int boundary;
size_t len;
uint32_t *tmp, *lim_array, *rnd_array;
VALUE vtmp;
VALUE val;
len = rb_absint_numwords(limit, 32, NULL);
tmp = ALLOCV_N(uint32_t, vtmp, len*2);
lim_array = tmp;
rnd_array = tmp + len;
rb_integer_pack(limit, lim_array, len, sizeof(uint32_t), 0,
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
retry:
mask = 0;
boundary = 1;
for (i = len-1; 0 <= i; i--) {
uint32_t r = 0;
uint32_t lim = lim_array[i];
mask = mask ? 0xffffffff : (uint32_t)make_mask(lim);
if (mask) {
r = rng->get_int32(rnd) & mask;
if (boundary) {
if (lim < r)
goto retry;
if (r < lim)
boundary = 0;
}
}
rnd_array[i] = r;
}
val = rb_integer_unpack(rnd_array, len, sizeof(uint32_t), 0,
INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
ALLOCV_END(vtmp);
return val;
}
/*
* Returns random unsigned long value in [0, +limit+].
*
* Note that +limit+ is included, and the range of the argument and the
* return value depends on environments.
*/
unsigned long
rb_genrand_ulong_limited(unsigned long limit)
{
rb_random_mt_t *mt = default_mt();
return limited_rand(&random_mt_if, &mt->base, limit);
}
static VALUE
obj_random_bytes(VALUE obj, void *p, long n)
{
VALUE len = LONG2NUM(n);
VALUE v = rb_funcallv_public(obj, id_bytes, 1, &len);
long l;
Check_Type(v, T_STRING);
l = RSTRING_LEN(v);
if (l < n)
rb_raise(rb_eRangeError, "random data too short %ld", l);
else if (l > n)
rb_raise(rb_eRangeError, "random data too long %ld", l);
if (p) memcpy(p, RSTRING_PTR(v), n);
return v;
}
static unsigned int
random_int32(const rb_random_interface_t *rng, rb_random_t *rnd)
{
return rng->get_int32(rnd);
}
unsigned int
rb_random_int32(VALUE obj)
{
rb_random_t *rnd = try_get_rnd(obj);
if (!rnd) {
uint32_t x;
obj_random_bytes(obj, &x, sizeof(x));
return (unsigned int)x;
}
return random_int32(try_rand_if(obj, rnd), rnd);
}
static double
random_real(VALUE obj, rb_random_t *rnd, int excl)
{
uint32_t a, b;
if (!rnd) {
uint32_t x[2] = {0, 0};
obj_random_bytes(obj, x, sizeof(x));
a = x[0];
b = x[1];
}
else {
const rb_random_interface_t *rng = try_rand_if(obj, rnd);
if (rng->get_real) return rng->get_real(rnd, excl);
a = random_int32(rng, rnd);
b = random_int32(rng, rnd);
}
return rb_int_pair_to_real(a, b, excl);
}
double
rb_int_pair_to_real(uint32_t a, uint32_t b, int excl)
{
if (excl) {
return int_pair_to_real_exclusive(a, b);
}
else {
return int_pair_to_real_inclusive(a, b);
}
}
double
rb_random_real(VALUE obj)
{
rb_random_t *rnd = try_get_rnd(obj);
if (!rnd) {
VALUE v = rb_funcallv(obj, id_rand, 0, 0);
double d = NUM2DBL(v);
if (d < 0.0) {
rb_raise(rb_eRangeError, "random number too small %g", d);
}
else if (d >= 1.0) {
rb_raise(rb_eRangeError, "random number too big %g", d);
}
return d;
}
return random_real(obj, rnd, TRUE);
}
static inline VALUE
ulong_to_num_plus_1(unsigned long n)
{
#if HAVE_LONG_LONG
return ULL2NUM((LONG_LONG)n+1);
#else
if (n >= ULONG_MAX) {
return rb_big_plus(ULONG2NUM(n), INT2FIX(1));
}
return ULONG2NUM(n+1);
#endif
}
static unsigned long
random_ulong_limited(VALUE obj, rb_random_t *rnd, unsigned long limit)
{
if (!limit) return 0;
if (!rnd) {
const int w = sizeof(limit) * CHAR_BIT - nlz_long(limit);
const int n = w > 32 ? sizeof(unsigned long) : sizeof(uint32_t);
const unsigned long mask = ~(~0UL << w);
const unsigned long full =
(size_t)n >= sizeof(unsigned long) ? ~0UL :
~(~0UL << n * CHAR_BIT);
unsigned long val, bits = 0, rest = 0;
do {
if (mask & ~rest) {
union {uint32_t u32; unsigned long ul;} buf;
obj_random_bytes(obj, &buf, n);
rest = full;
bits = (n == sizeof(uint32_t)) ? buf.u32 : buf.ul;
}
val = bits;
bits >>= w;
rest >>= w;
val &= mask;
} while (limit < val);
return val;
}
return limited_rand(try_rand_if(obj, rnd), rnd, limit);
}
unsigned long
rb_random_ulong_limited(VALUE obj, unsigned long limit)
{
rb_random_t *rnd = try_get_rnd(obj);
if (!rnd) {
VALUE lim = ulong_to_num_plus_1(limit);
VALUE v = rb_to_int(rb_funcallv_public(obj, id_rand, 1, &lim));
unsigned long r = NUM2ULONG(v);
if (rb_num_negative_p(v)) {
rb_raise(rb_eRangeError, "random number too small %ld", r);
}
if (r > limit) {
rb_raise(rb_eRangeError, "random number too big %ld", r);
}
return r;
}
return limited_rand(try_rand_if(obj, rnd), rnd, limit);
}
static VALUE
random_ulong_limited_big(VALUE obj, rb_random_t *rnd, VALUE vmax)
{
if (!rnd) {
VALUE v, vtmp;
size_t i, nlz, len = rb_absint_numwords(vmax, 32, &nlz);
uint32_t *tmp = ALLOCV_N(uint32_t, vtmp, len * 2);
uint32_t mask = (uint32_t)~0 >> nlz;
uint32_t *lim_array = tmp;
uint32_t *rnd_array = tmp + len;
int flag = INTEGER_PACK_MSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER;
rb_integer_pack(vmax, lim_array, len, sizeof(uint32_t), 0, flag);
retry:
obj_random_bytes(obj, rnd_array, len * sizeof(uint32_t));
rnd_array[0] &= mask;
for (i = 0; i < len; ++i) {
if (lim_array[i] < rnd_array[i])
goto retry;
if (rnd_array[i] < lim_array[i])
break;
}
v = rb_integer_unpack(rnd_array, len, sizeof(uint32_t), 0, flag);
ALLOCV_END(vtmp);
return v;
}
return limited_big_rand(try_rand_if(obj, rnd), rnd, vmax);
}
static VALUE
rand_bytes(const rb_random_interface_t *rng, rb_random_t *rnd, long n)
{
VALUE bytes;
char *ptr;
bytes = rb_str_new(0, n);
ptr = RSTRING_PTR(bytes);
rng->get_bytes(rnd, ptr, n);
return bytes;
}
/*
* call-seq: prng.bytes(size) -> string
*
* Returns a random binary string containing +size+ bytes.
*
* random_string = Random.new.bytes(10) # => "\xD7:R\xAB?\x83\xCE\xFAkO"
* random_string.size # => 10
*/
static VALUE
random_bytes(VALUE obj, VALUE len)
{
rb_random_t *rnd = try_get_rnd(obj);
return rand_bytes(rb_rand_if(obj), rnd, NUM2LONG(rb_to_int(len)));
}
void
rb_rand_bytes_int32(rb_random_get_int32_func *get_int32,
rb_random_t *rnd, void *p, size_t n)
{
char *ptr = p;
unsigned int r, i;
for (; n >= SIZEOF_INT32; n -= SIZEOF_INT32) {
r = get_int32(rnd);
i = SIZEOF_INT32;
do {
*ptr++ = (char)r;
r >>= CHAR_BIT;
} while (--i);
}
if (n > 0) {
r = get_int32(rnd);
do {
*ptr++ = (char)r;
r >>= CHAR_BIT;
} while (--n);
}
}
VALUE
rb_random_bytes(VALUE obj, long n)
{
rb_random_t *rnd = try_get_rnd(obj);
if (!rnd) {
return obj_random_bytes(obj, NULL, n);
}
return rand_bytes(try_rand_if(obj, rnd), rnd, n);
}
/*
* call-seq: Random.bytes(size) -> string
*
* Returns a random binary string.
* The argument +size+ specifies the length of the returned string.
*/
static VALUE
random_s_bytes(VALUE obj, VALUE len)
{
rb_random_t *rnd = rand_start(default_rand());
return rand_bytes(&random_mt_if, rnd, NUM2LONG(rb_to_int(len)));
}
/*
* call-seq: Random.seed -> integer
*
* Returns the seed value used to initialize the Ruby system PRNG.
* This may be used to initialize another generator with the same
* state at a later time, causing it to produce the same sequence of
* numbers.
*
* Random.seed #=> 1234
* prng1 = Random.new(Random.seed)
* prng1.seed #=> 1234
* prng1.rand(100) #=> 47
* Random.seed #=> 1234
* Random.rand(100) #=> 47
*/
static VALUE
random_s_seed(VALUE obj)
{
rb_random_mt_t *rnd = rand_mt_start(default_rand());
return rnd->base.seed;
}
static VALUE
range_values(VALUE vmax, VALUE *begp, VALUE *endp, int *exclp)
{
VALUE beg, end;
if (!rb_range_values(vmax, &beg, &end, exclp)) return Qfalse;
if (begp) *begp = beg;
if (NIL_P(beg)) return Qnil;
if (endp) *endp = end;
if (NIL_P(end)) return Qnil;
return rb_check_funcall_default(end, id_minus, 1, begp, Qfalse);
}
static VALUE
rand_int(VALUE obj, rb_random_t *rnd, VALUE vmax, int restrictive)
{
/* mt must be initialized */
unsigned long r;
if (FIXNUM_P(vmax)) {
long max = FIX2LONG(vmax);
if (!max) return Qnil;
if (max < 0) {
if (restrictive) return Qnil;
max = -max;
}
r = random_ulong_limited(obj, rnd, (unsigned long)max - 1);
return ULONG2NUM(r);
}
else {
VALUE ret;
if (rb_bigzero_p(vmax)) return Qnil;
if (!BIGNUM_SIGN(vmax)) {
if (restrictive) return Qnil;
vmax = rb_big_uminus(vmax);
}
vmax = rb_big_minus(vmax, INT2FIX(1));
if (FIXNUM_P(vmax)) {
long max = FIX2LONG(vmax);
if (max == -1) return Qnil;
r = random_ulong_limited(obj, rnd, max);
return LONG2NUM(r);
}
ret = random_ulong_limited_big(obj, rnd, vmax);
RB_GC_GUARD(vmax);
return ret;
}
}
static void
domain_error(void)
{
VALUE error = INT2FIX(EDOM);
rb_exc_raise(rb_class_new_instance(1, &error, rb_eSystemCallError));
}
NORETURN(static void invalid_argument(VALUE));
static void
invalid_argument(VALUE arg0)
{
rb_raise(rb_eArgError, "invalid argument - %"PRIsVALUE, arg0);
}
static VALUE
check_random_number(VALUE v, const VALUE *argv)
{
switch (v) {
case Qfalse:
(void)NUM2LONG(argv[0]);
break;
case Qnil:
invalid_argument(argv[0]);
}
return v;
}
static inline double
float_value(VALUE v)
{
double x = RFLOAT_VALUE(v);
if (!isfinite(x)) {
domain_error();
}
return x;
}
static inline VALUE
rand_range(VALUE obj, rb_random_t* rnd, VALUE range)
{
VALUE beg = Qundef, end = Qundef, vmax, v;
int excl = 0;
if ((v = vmax = range_values(range, &beg, &end, &excl)) == Qfalse)
return Qfalse;
if (NIL_P(v)) domain_error();
if (!RB_FLOAT_TYPE_P(vmax) && (v = rb_check_to_int(vmax), !NIL_P(v))) {
long max;
vmax = v;
v = Qnil;
fixnum:
if (FIXNUM_P(vmax)) {
if ((max = FIX2LONG(vmax) - excl) >= 0) {
unsigned long r = random_ulong_limited(obj, rnd, (unsigned long)max);
v = ULONG2NUM(r);
}
}
else if (BUILTIN_TYPE(vmax) == T_BIGNUM && BIGNUM_SIGN(vmax) && !rb_bigzero_p(vmax)) {
vmax = excl ? rb_big_minus(vmax, INT2FIX(1)) : rb_big_norm(vmax);
if (FIXNUM_P(vmax)) {
excl = 0;
goto fixnum;
}
v = random_ulong_limited_big(obj, rnd, vmax);
}
}
else if (v = rb_check_to_float(vmax), !NIL_P(v)) {
int scale = 1;
double max = RFLOAT_VALUE(v), mid = 0.5, r;
if (isinf(max)) {
double min = float_value(rb_to_float(beg)) / 2.0;
max = float_value(rb_to_float(end)) / 2.0;
scale = 2;
mid = max + min;
max -= min;
}
else if (isnan(max)) {
domain_error();
}
v = Qnil;
if (max > 0.0) {
r = random_real(obj, rnd, excl);
if (scale > 1) {
return rb_float_new(+(+(+(r - 0.5) * max) * scale) + mid);
}
v = rb_float_new(r * max);
}
else if (max == 0.0 && !excl) {
v = rb_float_new(0.0);
}
}
if (FIXNUM_P(beg) && FIXNUM_P(v)) {
long x = FIX2LONG(beg) + FIX2LONG(v);
return LONG2NUM(x);
}
switch (TYPE(v)) {
case T_NIL:
break;
case T_BIGNUM:
return rb_big_plus(v, beg);
case T_FLOAT: {
VALUE f = rb_check_to_float(beg);
if (!NIL_P(f)) {
return DBL2NUM(RFLOAT_VALUE(v) + RFLOAT_VALUE(f));
}
}
default:
return rb_funcallv(beg, id_plus, 1, &v);
}
return v;
}
static VALUE rand_random(int argc, VALUE *argv, VALUE obj, rb_random_t *rnd);
/*
* call-seq:
* prng.rand -> float
* prng.rand(max) -> number
* prng.rand(range) -> number
*
* When +max+ is an Integer, +rand+ returns a random integer greater than
* or equal to zero and less than +max+. Unlike Kernel.rand, when +max+
* is a negative integer or zero, +rand+ raises an ArgumentError.
*
* prng = Random.new
* prng.rand(100) # => 42
*
* When +max+ is a Float, +rand+ returns a random floating point number
* between 0.0 and +max+, including 0.0 and excluding +max+.
*
* prng.rand(1.5) # => 1.4600282860034115
*
* When +range+ is a Range, +rand+ returns a random number where
* <code>range.member?(number) == true</code>.
*
* prng.rand(5..9) # => one of [5, 6, 7, 8, 9]
* prng.rand(5...9) # => one of [5, 6, 7, 8]
* prng.rand(5.0..9.0) # => between 5.0 and 9.0, including 9.0
* prng.rand(5.0...9.0) # => between 5.0 and 9.0, excluding 9.0
*
* Both the beginning and ending values of the range must respond to subtract
* (<tt>-</tt>) and add (<tt>+</tt>)methods, or rand will raise an
* ArgumentError.
*/
static VALUE
random_rand(int argc, VALUE *argv, VALUE obj)
{
VALUE v = rand_random(argc, argv, obj, try_get_rnd(obj));
check_random_number(v, argv);
return v;
}
static VALUE
rand_random(int argc, VALUE *argv, VALUE obj, rb_random_t *rnd)
{
VALUE vmax, v;
if (rb_check_arity(argc, 0, 1) == 0) {
return rb_float_new(random_real(obj, rnd, TRUE));
}
vmax = argv[0];
if (NIL_P(vmax)) return Qnil;
if (!RB_FLOAT_TYPE_P(vmax)) {
v = rb_check_to_int(vmax);
if (!NIL_P(v)) return rand_int(obj, rnd, v, 1);
}
v = rb_check_to_float(vmax);
if (!NIL_P(v)) {
const double max = float_value(v);
if (max < 0.0) {
return Qnil;
}
else {
double r = random_real(obj, rnd, TRUE);
if (max > 0.0) r *= max;
return rb_float_new(r);
}
}
return rand_range(obj, rnd, vmax);
}
/*
* call-seq:
* prng.random_number -> float
* prng.random_number(max) -> number
* prng.random_number(range) -> number
* prng.rand -> float
* prng.rand(max) -> number
* prng.rand(range) -> number
*
* Generates formatted random number from raw random bytes.
* See Random#rand.
*/
static VALUE
rand_random_number(int argc, VALUE *argv, VALUE obj)
{
rb_random_t *rnd = try_get_rnd(obj);
VALUE v = rand_random(argc, argv, obj, rnd);
if (NIL_P(v)) v = rand_random(0, 0, obj, rnd);
else if (!v) invalid_argument(argv[0]);
return v;
}
/*
* call-seq:
* prng1 == prng2 -> true or false
*
* Returns true if the two generators have the same internal state, otherwise
* false. Equivalent generators will return the same sequence of
* pseudo-random numbers. Two generators will generally have the same state
* only if they were initialized with the same seed
*
* Random.new == Random.new # => false
* Random.new(1234) == Random.new(1234) # => true
*
* and have the same invocation history.
*
* prng1 = Random.new(1234)
* prng2 = Random.new(1234)
* prng1 == prng2 # => true
*
* prng1.rand # => 0.1915194503788923
* prng1 == prng2 # => false
*
* prng2.rand # => 0.1915194503788923
* prng1 == prng2 # => true
*/
static VALUE
rand_mt_equal(VALUE self, VALUE other)
{
rb_random_mt_t *r1, *r2;
if (rb_obj_class(self) != rb_obj_class(other)) return Qfalse;
r1 = get_rnd_mt(self);
r2 = get_rnd_mt(other);
if (memcmp(r1->mt.state, r2->mt.state, sizeof(r1->mt.state))) return Qfalse;
if ((r1->mt.next - r1->mt.state) != (r2->mt.next - r2->mt.state)) return Qfalse;
if (r1->mt.left != r2->mt.left) return Qfalse;
return rb_equal(r1->base.seed, r2->base.seed);
}
/*
* call-seq:
* rand(max=0) -> number
*
* If called without an argument, or if <tt>max.to_i.abs == 0</tt>, rand
* returns a pseudo-random floating point number between 0.0 and 1.0,
* including 0.0 and excluding 1.0.
*
* rand #=> 0.2725926052826416
*
* When +max.abs+ is greater than or equal to 1, +rand+ returns a pseudo-random
* integer greater than or equal to 0 and less than +max.to_i.abs+.
*
* rand(100) #=> 12
*
* When +max+ is a Range, +rand+ returns a random number where
* <code>range.member?(number) == true</code>.
*
* Negative or floating point values for +max+ are allowed, but may give
* surprising results.
*
* rand(-100) # => 87
* rand(-0.5) # => 0.8130921818028143
* rand(1.9) # equivalent to rand(1), which is always 0
*
* Kernel.srand may be used to ensure that sequences of random numbers are
* reproducible between different runs of a program.
*
* See also Random.rand.
*/
static VALUE
rb_f_rand(int argc, VALUE *argv, VALUE obj)
{
VALUE vmax;
rb_random_t *rnd = rand_start(default_rand());
if (rb_check_arity(argc, 0, 1) && !NIL_P(vmax = argv[0])) {
VALUE v = rand_range(obj, rnd, vmax);
if (v != Qfalse) return v;
vmax = rb_to_int(vmax);
if (vmax != INT2FIX(0)) {
v = rand_int(obj, rnd, vmax, 0);
if (!NIL_P(v)) return v;
}
}
return DBL2NUM(random_real(obj, rnd, TRUE));
}
/*
* call-seq:
* Random.rand -> float
* Random.rand(max) -> number
* Random.rand(range) -> number
*
* Returns a random number using the Ruby system PRNG.
*
* See also Random#rand.
*/
static VALUE
random_s_rand(int argc, VALUE *argv, VALUE obj)
{
VALUE v = rand_random(argc, argv, Qnil, rand_start(default_rand()));
check_random_number(v, argv);
return v;
}
#define SIP_HASH_STREAMING 0
#define sip_hash13 ruby_sip_hash13
#if !defined _WIN32 && !defined BYTE_ORDER
# ifdef WORDS_BIGENDIAN
# define BYTE_ORDER BIG_ENDIAN
# else
# define BYTE_ORDER LITTLE_ENDIAN
# endif
# ifndef LITTLE_ENDIAN
# define LITTLE_ENDIAN 1234
# endif
# ifndef BIG_ENDIAN
# define BIG_ENDIAN 4321
# endif
#endif
#include "siphash.c"
typedef struct {
st_index_t hash;
uint8_t sip[16];
} hash_salt_t;
static union {
hash_salt_t key;
uint32_t u32[type_roomof(hash_salt_t, uint32_t)];
} hash_salt;
static void
init_hash_salt(struct MT *mt)
{
int i;
for (i = 0; i < numberof(hash_salt.u32); ++i)
hash_salt.u32[i] = genrand_int32(mt);
}
NO_SANITIZE("unsigned-integer-overflow", extern st_index_t rb_hash_start(st_index_t h));
st_index_t
rb_hash_start(st_index_t h)
{
return st_hash_start(hash_salt.key.hash + h);
}
st_index_t
rb_memhash(const void *ptr, long len)
{
sip_uint64_t h = sip_hash13(hash_salt.key.sip, ptr, len);
#ifdef HAVE_UINT64_T
return (st_index_t)h;
#else
return (st_index_t)(h.u32[0] ^ h.u32[1]);
#endif
}
/* Initialize Ruby internal seeds. This function is called at very early stage
* of Ruby startup. Thus, you can't use Ruby's object. */
void
Init_RandomSeedCore(void)
{
if (!fill_random_bytes(&hash_salt, sizeof(hash_salt), FALSE)) return;
/*
If failed to fill siphash's salt with random data, expand less random
data with MT.
Don't reuse this MT for default_rand(). default_rand()::seed shouldn't
provide a hint that an attacker guess siphash's seed.
*/
struct MT mt;
with_random_seed(DEFAULT_SEED_CNT, 0) {
init_by_array(&mt, seedbuf, DEFAULT_SEED_CNT);
}
init_hash_salt(&mt);
explicit_bzero(&mt, sizeof(mt));
}
void
rb_reset_random_seed(void)
{
rb_random_mt_t *r = default_rand();
uninit_genrand(&r->mt);
r->base.seed = INT2FIX(0);
}
/*
* Document-class: Random
*
* Random provides an interface to Ruby's pseudo-random number generator, or
* PRNG. The PRNG produces a deterministic sequence of bits which approximate
* true randomness. The sequence may be represented by integers, floats, or
* binary strings.
*
* The generator may be initialized with either a system-generated or
* user-supplied seed value by using Random.srand.
*
* The class method Random.rand provides the base functionality of Kernel.rand
* along with better handling of floating point values. These are both
* interfaces to the Ruby system PRNG.
*
* Random.new will create a new PRNG with a state independent of the Ruby
* system PRNG, allowing multiple generators with different seed values or
* sequence positions to exist simultaneously. Random objects can be
* marshaled, allowing sequences to be saved and resumed.
*
* PRNGs are currently implemented as a modified Mersenne Twister with a period
* of 2**19937-1. As this algorithm is _not_ for cryptographical use, you must
* use SecureRandom for security purpose, instead of this PRNG.
*
* See also Random::Formatter module that adds convenience methods to generate
* various forms of random data.
*/
void
InitVM_Random(void)
{
VALUE base;
ID id_base = rb_intern_const("Base");
rb_define_global_function("srand", rb_f_srand, -1);
rb_define_global_function("rand", rb_f_rand, -1);
base = rb_define_class_id(id_base, rb_cObject);
rb_undef_alloc_func(base);
rb_cRandom = rb_define_class("Random", base);
rb_const_set(rb_cRandom, id_base, base);
rb_define_alloc_func(rb_cRandom, random_alloc);
rb_define_method(base, "initialize", random_init, -1);
rb_define_method(base, "rand", random_rand, -1);
rb_define_method(base, "bytes", random_bytes, 1);
rb_define_method(base, "seed", random_get_seed, 0);
rb_define_method(rb_cRandom, "initialize_copy", rand_mt_copy, 1);
rb_define_private_method(rb_cRandom, "marshal_dump", rand_mt_dump, 0);
rb_define_private_method(rb_cRandom, "marshal_load", rand_mt_load, 1);
rb_define_private_method(rb_cRandom, "state", rand_mt_state, 0);
rb_define_private_method(rb_cRandom, "left", rand_mt_left, 0);
rb_define_method(rb_cRandom, "==", rand_mt_equal, 1);
#if 0 /* for RDoc: it can't handle unnamed base class */
rb_define_method(rb_cRandom, "initialize", random_init, -1);
rb_define_method(rb_cRandom, "rand", random_rand, -1);
rb_define_method(rb_cRandom, "bytes", random_bytes, 1);
rb_define_method(rb_cRandom, "seed", random_get_seed, 0);
#endif
rb_define_singleton_method(rb_cRandom, "srand", rb_f_srand, -1);
rb_define_singleton_method(rb_cRandom, "rand", random_s_rand, -1);
rb_define_singleton_method(rb_cRandom, "bytes", random_s_bytes, 1);
rb_define_singleton_method(rb_cRandom, "seed", random_s_seed, 0);
rb_define_singleton_method(rb_cRandom, "new_seed", random_seed, 0);
rb_define_singleton_method(rb_cRandom, "urandom", random_raw_seed, 1);
rb_define_private_method(CLASS_OF(rb_cRandom), "state", random_s_state, 0);
rb_define_private_method(CLASS_OF(rb_cRandom), "left", random_s_left, 0);
{
/*
* Generate a random number in the given range as Random does
*
* prng.random_number #=> 0.5816771641321361
* prng.random_number(1000) #=> 485
* prng.random_number(1..6) #=> 3
* prng.rand #=> 0.5816771641321361
* prng.rand(1000) #=> 485
* prng.rand(1..6) #=> 3
*/
VALUE m = rb_define_module_under(rb_cRandom, "Formatter");
rb_include_module(base, m);
rb_extend_object(base, m);
rb_define_method(m, "random_number", rand_random_number, -1);
rb_define_method(m, "rand", rand_random_number, -1);
}
default_rand_key = rb_ractor_local_storage_ptr_newkey(&default_rand_key_storage_type);
}
#undef rb_intern
void
Init_Random(void)
{
id_rand = rb_intern("rand");
id_bytes = rb_intern("bytes");
InitVM(Random);
}