Segmentation models with pretrained backbones. PyTorch.
-
Updated
Mar 3, 2023 - Python
Segmentation models with pretrained backbones. PyTorch.
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation
常用的语义分割架构结构综述以及代码复现 华为媒体研究院 图文Caption、OCR识别、图视文多模态理解与生成相关方向工作或实习欢迎咨询 15757172165 https://guanfuchen.github.io/media/hw_zhaopin_20220724_tiny.jpg
MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation
GeoTorchAI: A Spatiotemporal Deep Learning Framework (https://dl.acm.org/doi/abs/10.1145/3557915.3561036)
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)
Rembg Video Virtual Green Screen Edition
DoubleU-Net for Semantic Image Segmentation in TensorFlow & Pytorch (Nominated for Best Paper Award (IEEE CBMS))
A Python Library for High-Level Semantic Segmentation Models based on TensorFlow and Keras with pretrained backbones.
Official repo for Medical Image Segmentation Review: The success of U-Net
Contextual Attention Network: Transformer Meets U-Net
Meidcal Image Segmentation Pytorch Version
This project is about detecting defects on steel surface using Unet. The dataset used for this project is the NEU-DET database.
Computer vision models
[AAAI 2023] Official PyTorch implementation of the paper "SLAug: Rethinking Data Augmentation for Single-source Domain Generalization in Medical Image Segmentation"
3クラス(肌、服、髪)のセマンティックセグメンテーションを実施するモデル(A model that performs semantic segmentation of 3 classes(skin, clothes, hair))
Salient attention U-Net model for tumor segmentation in breast ultrasound images, based on visual saliency maps
[TMI 2023] XBound-Former: Toward Cross-scale Boundary Modeling in Transformers
Add a description, image, and links to the segmentation-models topic page so that developers can more easily learn about it.
To associate your repository with the segmentation-models topic, visit your repo's landing page and select "manage topics."