

HYPERCUBE ALGORITHMS

FOR

IMAGE PROCESSING

AND

PATTERN RECOGNITION

SANJAY RANKA • SARTAJ SAHNI

 1989 Sanjay Ranka and Sartaj Sahni

1

-- --

2

Chapter 1

Introduction

1.1 Parallel Architectures

Parallel computers may be classified by taking into account their memory organization, processor
organization, and the number of instruction streams supported.

Memory organization

A multiprocessor is a parallel computer that has two or more processors. These processors
share a common memory or a common memory address space (Quinn 1987). A block diagram of
a tightly coupled multiprocessor is provided in Figure 1.1. In such a computer, the processors
access memory via a processor-memory interconnection network. This network could be a sim-
ple bus or any of a variety of switching networks such as the Omega network, Benes network,
full cross bar switch, etc. (Siegel 1979). In a loosely coupled multiprocessor, each processor has a
local memory (Figure 1.2). These local memories together form the shared address space of the
computer. Typically a memory reference to the local memory of a processor is orders of magni-
tude faster than a memory reference to a remote memory as local memory references are not
routed through the interconnection network while remote memory references are.

-- --

1.1. PARALLEL ARCHITECTURES 3

Processing
Element

Processing
Element

Processing
Element

Processing
Element

.

.

.

Processing
Element

Processing
Element

I
n
t
e
r
c
o
n
n
e
c
t
i
o
n

N
e
t
w
o
r
k

G
l
o
b
a
l

M
e
m
o
r
y

B
a
n
k

Figure 1.1 Tightly coupled multiprocessor

The block diagram for a multicomputer is the same as that for a loosely coupled multiproces-
sor (Figure 1.2). The significant difference between a multicomputer and a multiprocessor is that
a multicomputer has neither a shared memory nor a shared memory address space (Quinn 1987).
Consequently to use data in a remote memory, it is necessary to explicitly move that data into the
local memory. This and all other inter-processor communication is done by passing messages
(via the interconnection network) among the processors. Our further discussion is restricted to
multicomputers.

Processor organization

Processor organization is defined by the interconnection network used to connect the pro-
cessors of the multicomputer. Some of the more common interconnection networks are: two
dimensional mesh, ring, tree, and hypercube (Figure 1.3). The first three are intuitive while the
fourth needs some elaboration. In a hypercube of dimension d, there are 2d processors. Assume
that these are labeled 0 , 1, . . . , 2d − 1. Two processors i and j are directly connected iff the binary
representations of i and j differ in exactly one bit. Each edge of Figure 1.3 (d) represents a direct
connection. Thus in a hypercube of dimension d, each processor is connected to d others. If the

-- --

4 CHAPTER 1. INTRODUCTION

Processing
Element

Memory

Processing
Element

Memory

.

.

.

Processing
Element

Memory

I
n
t
e
r
c
o
n
n
e
c
t
i
o
n

N
e
t
w
o
r
k

Figure 1.2 Block diagram for a loosely coupled multiprocessor and a multicomputer

direct connection between a pair of processors i and j is unidirectional, then at any given time
messages can flow from either i to j or from j to i. In the case of bidirectional connections, it is
possible for i to send a message to j and for j to simultaneously send one to i.

The popularity of the hypercube network may be attributed to the following:

(1) Using d connections per processor, 2d processors may be interconnected such that the max-
imum distance between any two processors is d. While meshes, rings, and binary trees use a
smaller number of connections per processor, the maximum distance between processors is
larger. It is interesting to note that other networks such as the star graph (Akers, Harel, and
Krishnamurthy 1987) do better than a hypercube in this regard. A star graph connects
(d +1)! processors using d connections per processor. The inter-processor distance is at most�

��
2

3(d − 1)________
�
�

� . The hypercube has the advantage of being a well studied network while the

star graph is relatively new and few algorithms have been developed for it.

-- --

1.1. PARALLEL ARCHITECTURES 5

(a) A binary tree of 7 nodes (b) A 16 node mesh
End around connections are not shown

(c) An eight node ring (d) 16 processor hypercube

Figure 1.3 Different types of interconnection networks

(2) Most other popular networks are easily mapped into a hypercube. For example a 2 × 4
mesh, 8 node ring, and a 7 node full binary tree may be mapped into an 8 node hypercube
as shown in Figure 1.4. We shall examine these mappings in detail later.

(3) A hypercube is completely symmetric. Every processor’s interconnection pattern is like
that of every other processor. Furthermore, a hypercube is completely decomposable into
sub-hypercubes (i.e., hypercubes of smaller dimension). This property makes it relatively
easy to implement recursive divide-and-conquer algorithms on the hypercube (Stout 1987).

Instruction streams

Flynn (1966) classified computers based on the number of instruction and data streams. The
two categories relevant to our discussion here are SIMD (single instruction multiple data
streams) and MIMD (multiple instruction multiple data streams) computers. In an SIMD parallel
computer, all processors execute in a synchronous manner. In any given cycle, all processors
execute the same instruction. MIMD parallel computers are generally asynchronous (in theory
they could be synchronous too) and different processors may execute different instructions at any
given time.

-- --

6 CHAPTER 1. INTRODUCTION

000 001 011 010 110 111 101 100

(a) An 8 node ring

000 001 011 010

100 101 111 110

(b) A 2 × 4 mesh

011 101 010 111

001 110

000 100
............

...

.....................

(c) A 7 node complete binary tree

(node 100 is not part of the tree)

Figure 1.4 Embedding of different networks in an 8 node hypercube

We shall consider both SIMD and MIMD multicomputers. Block diagrams of these are
given in Figure 1.5 and Figure 1.6, respectively. In this book we are concerned only with the
case when the interconnection network is the hypercube network. The important features of an
SIMD hypercube computer and the programming notation we use are:

(1) There are P = 2p processing elements (PE). Each PE has a unique index in the range [0,
P − 1]. A p dimensional hypercube network connects the P = 2p PEs. Let ip −1ip −2

 . . . i 0 be
the binary representation of the PE index i. Let ik

__
be the complement of bit ik. A hypercube

network directly connects pairs of processors whose indices differ in exactly one bit. I.e.,
processor ip −1ip −2

 . . . i0 is connected to processors ip −1
 . . . ik

__
 . . . i0, 0 ≤ k ≤ p −1.

(2) We use the notation i (b) to represent the number that differs from i in exactly bit b. We shall
use brackets ([]) to index an array and parentheses (‘()’) to index PEs. Thus A[i] refers to
the i’th element of array A and A(i) refers to the A register of PE i. Also, A[j](i) refers to
the j’th element of array A in PE i. The local memory in each PE holds data only (i.e., no
executable instructions). Hence PEs need to be able to perform only the basic arithmetic
operations (i.e., no instruction fetch or decode is needed).

(3) There is a separate program memory and control unit. The control unit performs instruction
sequencing, fetching, and decoding. In addition, instructions and masks are broadcast by
the control unit to the PEs for execution. An instruction mask is a boolean function used to
select certain PEs to execute an instruction. For example, in the instruction

A (i) := A (i) + 1, (i0 = 1)

(i0 = 1) is a mask that selects only those PEs whose index has bit 0 equal to 1. I.e., PEs with
an odd index increment their A registers by 1. Sometimes we shall omit the PE indexing of
registers. So, the above statement is equivalent to the statement:

-- --

1.1. PARALLEL ARCHITECTURES 7

Processing
Element

Memory

Processing
Element

Memory

.

.

.

Processing
Element

Memory

I
n
t
e
r
c
o
n
n
e
c
t
i
o
n

N
e
t
w
o
r
k

Control
Unit

Program
Memory

I/O

Figure 1.5 Block diagram of an SIMD multicomputer

A := A + 1, (i0 = 1)

(4) Interprocessor assignments are denoted using the symbol ‘‘←’’, while intraprocessor
assignments are denoted using the symbol ‘‘:=’’. Thus the assignment statement:

B (i (2)) ← B (i), (i2 = 0)

on a hypercube is executed only by the processors with bit 2 equal to 0. These processors
transmit their B register data to the corresponding processors with bit 2 equal to 1.

-- --

8 CHAPTER 1. INTRODUCTION

Processing
Element

Memory

Processing
Element

Memory

.

.

.

Processing
Element

Memory

I
n
t
e
r
c
o
n
n
e
c
t
i
o
n

N
e
t
w
o
r
k

I/O

Figure 1.6 Block diagram of an MIMD multicomputer

(5) In a unit route, one unit (bit, byte, word, or fixed size record) of data may be transmitted
between pairs of processors that are directly connected. Each processor can send and/or
receive only one unit of data in a unit route. If the links are unidirectional, then in a unit
route data can be transferred only in one direction. If the links are bidirectional than data
can be transferred in both directions in a unit route. For example, on a hypercube with uni-
directional links, the instruction:

B (i (2)) ← B (i), (i2 = 0)

takes one unit route, while the instruction:

B (i (2)) ← B (i)

takes two unit routes. If the hypercube has bidirectional links then both of the above
instructions take one unit route each. Note also that in the case of an SIMD hypercube,
different processors cannot transfer along different hypercube dimensions simultaneously.

-- --

1.1. PARALLEL ARCHITECTURES 9

So, if one processor is transferring data to its neighbor along dimension 0, then another pro-
cessor cannot simultaneously transfer data to its neighbor along dimension 1.

(6) Let B be the bandwidth of the links in the hypercube. The time required to transfer L units
of data between two processors that are distance d apart is Ο(dL / B) when the store-and-
forward mechanism is used and Ο(d + L /B) when wormhole routing is used (Athos and
Seitz, 1988). Wormhole routing transmits the data in a pipelined manner using a sequence
of L /B packets. The store-and-forward mechanism does not use pipelining. Note that when
several processors are transmitting data, one needs to factor in the effects of possible path
conflicts. The distinction between the store-and-forward and wormhole routing mechan-
isms isn’t very important to the developments in this book as most of our data transfers
have d = 1 and involve very small amounts of data.

The features, notation, and assumptions for MIMD multicomputers differ from those of
SIMD multicomputers in the following respects:

(1) There is no separate control unit and program memory.

(2) The local memory of each PE holds both the data and the program that the PE is to execute.

(3) At any given instance, different PEs may execute different instructions. In particular in an
MIMD hypercube, PE i may transfer data to PE i (b), while PE j simultaneously transfers
data to PE j (a), i ≠ j and a ≠ b.

1.2 Embedding In A Hypercube

1.2.1 Definitions

A set of interconnected processors may be modeled as an undirected graph in which each
vertex denotes a unique processor and there is an edge between two vertices iff the corresponding
processors are directly connected. Let G and H be two undirected graphs that model two sets of
interconnected processors. Let V (G) and V (H), respectively, denote the vertices in G and H. An
embedding of G into H is a mapping of the vertices of G into the vertices of H and of the edges of
G into simple paths of H. The vertex mapping is such that each vertex of G is mapped to a dis-
tinct vertex of H. Note that for an embedding to exist | V (H) | ≥ | V (G) | . Also, if H is connected
and | V (H) | ≥ | V (G) | then an embedding always exists.

As an example, consider the graphs G and H of Figure 1.7. The vertex mapping (1 → a, 2
→ b, 3 → c, 4 → d) and the edge to path mapping ((1,2) → ab, (2,4) → bad, (3,4) → cad, (1,3)
→ ac) defines an embedding of G into H.

The ratio | V (H) | / | V (G) | is called the expansion. The length of the longest path that any
edge of G is mapped to is called the dilation. The congestion of any edge of H is the number of
paths in the edge to path mapping that it is on. The maximum of the congestions of all edges of H

is the congestion of the embedding. For the above example, the expansion is 1 while the dilation
and congestion are both 2. In the remainder of this section the graph H will always be the graph
corresponding to a hypercube interconnection. Hd will denote the hypercube graph with dimen-
sion d. This graph has 2d vertices and each vertex has degree d.

-- --

10 CHAPTER 1. INTRODUCTION

1 2

43

(a) G

a

b c d

(b) H

Figure 1.7 Example graphs

1.2.2 Chains and Rings

Let G be a ring with 2d vertices. Assume that the ring vertices are numbered 0 through 2d−1
in ring order. Figure 1.3 (a) shows an eight processor ring. G can be embedded in Hd using a
Gray code scheme (Chan and Saad 1986, and Johnsson 1987). The Gray code Sk is defined recur-
sively as below:

S1 = 0, 1; Sk +1 = 0[Sk], 1[Sk]R, k > 1

where 0[Sk] is obtained by prefixing each entry in Sk with a 0 and 1[Sk]R is obtained by first rev-
ersing the order of the entries in Sk and then prefixing each entry with a 1. So, S2 = 00, 01, 11, 10
and S3 = 000, 001, 011, 010, 110, 111, 101, 100.

It is easy to verify that any two adjacent entries in Sk differ in exactly one bit. Furthermore,
the first and last entries also differ in exactly one bit. Let gray (i,k) be the i’th entry in Sk,
0 ≤ i < 2k. We shall use the following embedding of G into Hd:

(1) Vertex i of G is mapped to vertex gray (i,d) of H, 0 ≤ i < 2d.

(2) Each edge (i, j) of G is mapped to the unique edge in Hd that connects vertices gray (i,d) and
gray (j,d).

The expansion, dilation, and congestion factors for this embedding are all 1. Note that the
same embedding may be used when G is a chain rather than a ring. It should also be noted that
when the hypercube vertices are considered in Gray code order, every block of 2j vertices forms
a ring, j ≥ 0 (blocks are obtained by partitioning the vertices so ordered into groups of size 2j).
The above Gray code embedding is particularly useful in the case of MIMD hypercubes as in
such hypercubes each processor can send data to its neighbor on the chain in a single unit route.
Such a data transfer takes d unit routes on an SIMD hypercube as data transfer along all dimen-
sions of the hypercube are required.

-- --

1.2. EMBEDDING IN A HYPERCUBE 11

1.2.3 Meshes

The ring embedding may be generalized to obtain an embedding of a P × Q mesh when P

and Q are both powers of 2. Let P = 2p and Q = 2q. We shall embed the mesh into Hd where d =
p + q. The vertex in position (i, j) of the mesh is mapped to the hypercube vertex with binary
representation gray (i, p)gray (j, q). Figure 1.3 (b) shows the resulting mapping for a 2 × 4 mesh.
In this case p = 1, and q = 2. So, H3 is used and each processor index has three bits. The first bit
in the vertex to which (i, j) is mapped is gray (i, 1) and the last two are gray (j, 2). It is easy to see
that for each edge ((i, j), (k, l)) in the mesh there is a unique edge in Hd that connects vertices
gray (i, p)gray (j, d) and gray (k, p)gray (l, q) in Hd. This is true even if the mesh has row and
column wrap around connections (i.e., the end of a row or column connects to its front).

The above mapping has expansion, dilation, and congestion of 1. An arbitrary P × Q mesh
(i.e., one in which P and Q are not necessarily powers of 2) can be embedded in a hypercube with
expansion 2 and dilation 2 (Chan 1986).

1.2.4 Full Binary Trees

Let Ti be the full binary tree of height i. Since Ti has 2i−1 vertices, the best we can do is
embed Ti into Hi, i > 1. Note that T1 is trivially embedded into H0. While T2 can be embedded
into H2 with a dilation and congestion of 1 (Figure 1.8), there is no dilation 1 embedding of Ti

into Hi for i > 2. However, Ti can be embedded into Hi +1, i > 2 with dilation 1 and into Hi, i > 2
with dilation 2.

a c

b

(b) T2 embedded into H2

a

b c

(a) T2

Figure 1.8 Dilation 1 embedding of T2 into H2

?H{emb1} (Wu 1985) There is no dilation 1 embedding of Ti into Hi for i > 2.

Proof: Suppose there is a dilation one embedding of Ti into Hi for some i, i > 2. Since Hi is sym-
metric, we may assume that the root of Ti (assumed to be at level 1) is mapped to vertex 0 of Hi.
Its children (i.e., level two vertices of Ti) must be mapped to hypercube vertices that have exactly
one 1 in their binary representation (as this is a dilation one embedding). The level three vertices
of Ti must therefore be mapped to hypercube vertices with either zero or two ones. Hence the
level four vertices must be mapped to hypercube vertices with one or three ones; and so on. So,
the dilation one embedding must satisfy the following:

-- --

12 CHAPTER 1. INTRODUCTION

(1) Vertices of Ti that are on an odd level are mapped to hypercube vertices that have an even
number of ones.

(2) Vertices of Ti that are on an even level are mapped to hypercube vertices that have an odd
number of ones.

The number of hypercube vertices with an odd number of ones exactly equals the number
with an even number of ones. So, Hi has 2i −1 vertices in each category. If i is even, then Ti has 2
+ 23 + 25 + . . . + 2i−1 = 2(2i − 1)/3 > 2i−1 (for i > 2) vertices on even levels. Hence, Hi doesn’t
have enough vertices with an odd number of ones to accomodate the vertices of Ti that are on
even levels.

If i is odd, then Ti has 20 + 22 + 24 + . . . + 2i −1 = (2i +1 − 1)/3 > 2i −1 (for i > 1) vertices on odd
levels. So, Hi doesn’t have enough vertices with an even number of ones to accomodate the ver-
tices of Ti that are on odd levels.

So, there can be no dilation one embedding of Ti into Hi for i > 2.

?H{emb2} (Wu 1985) There is a dilation 1 embedding of Ti into Hi +1 for i > 0.

Proof: The proof is by construction. The embeddings we shall construct will satisfy the follow-
ing free neighbor property:

In the embedding of Ti into Hi +1 the root of Ti is mapped to a vertex in Hi +1 with
the property that at least one of its hypercube neighbors, A, is free (i.e., no tree
vertex is mapped to it) and furthermore A has a free neighbor B.

Dilation 1 free neighbor embeddings of T1 and T2 into H2 and H3, respectively, are given in Fig-
ure 1.9.

From a dilation one free neighbor embedding of Td −1 into Hd we can obtain a dilation one
free neighbor embedding of Td into Hd +1 in the following way:

(1) Let 0Hd denote the dimension d hypercube in Hd +1 comprised solely of vertices whose most
significant bit is 0. Let 1Hd denote the dimension d hypercube formed by the remaining ver-
tices of Hd +1.

(2) Use the dilation one free neighbor mapping of Td −1 into Hd to map the left subtree of Td into
0Hd and the right subtree of Td into 1Hd. Let 0A, 0B, 1A, and 1B denote the corresponding
free neighbors.

(3) Apply a rigid transformation (i.e., a rotation and/or translation that does not change the
relative positions of vertices in the mapping) to the mapping of the right subtree of Td into
1Hd such that the root of this subtree becomes a neighbor of 0A and the transformed posi-
tion T(1A) is a neighbor of 0B (see Figure 1.10 for the case d = 3).

(4) The root of Td is mapped to 0A.

One may verify that this mapping has dilation one. Since 0A has the free neighbor 0B
which in turn has the free neighbor T(1A), the mapping satisfies the free neighbor property.

-- --

1.2. EMBEDDING IN A HYPERCUBE 13

a

BA

a

(a) T1 → H2

b

a c
A B

a

b c

(b) T2 → H3

Figure 1.9 Free neighbor embeddings

?H{emb3} (Wu 1985) There is a dilation 2 embedding of Ti into Hi for i > 0.

Proof: The embedding of Ti into Hi will satisfy the following two properties:

(1) Cost 2 Property: Let A be the root of Ti and let L and R, respectively, be the roots of its left
and right subtrees. The distance between the vertices that A and L are mapped to in Hi is 2
while that between the vertices that A and R are mapped to is 1.

(2) Free Neighbor Property: The sole free node in Hi is a neighbor of the node to which the
root of Ti is mapped.

Figure 1.11 shows the embedding of T1 and T2 into H1 and H2, respectively. These embed-
dings satisfy both the above properties.

From a dilation two embedding of Td −1 into Hd −1 that satisfies the above two properties we
can obtain a dilation two embedding of Td into Hd that also satisfies these properties. The steps
are:

(1) Embed the left subtree of Td into 0Hd −1. Let 0A be the vertex in Hd to which the root of the
left subtree is mapped and let 0B be its free neighbor.

(2) Embed the right subtree of Td into 1Hd −1. Let 1A be the vertex in Hd to which the root of
the left subtree is mapped and let 1B be its free neighbor.

(3) Map the root of Td to the vertex 1B.

One may verify that this embedding satisfies the stated properties.

-- --

14 CHAPTER 1. INTRODUCTION

a

b c

d e f g

(a) T3

d0010

b e
0A 0B

0000 0001

0100
0101

(b) Left subtree into 0H3

f1010

c g
1A 1B

1000 1001

1100
1101

(c) Right subtree into 1H3

f
1010

g 1B
c 1A

1000 1001

1100
1101

(d) Transformed right subtree

Figure 1.10 Construction of ?H{emb2}

a a

(a) T1 → H1

a

b c

b

ac

(b) T2 → H2

Figure 1.11 Dilation 2 embeddings for ?H{emb3}

1.3 Performance Measures

The performance of uniprocessor algorithms and programs is typically measured by their time
and space requirements. These measures are also used for multicomputer algorithms. Other
measures that we shall now define are also used. Let tp and sp, respectively, denote the time and
space required on a p node multicomputer. While sp will normally be the total amount of memory

-- --

1.3. PERFORMANCE MEASURES 15

required by a p node multicomputer, for distributed memory multicomputers (as is our hyper-
cube) it is often more meaningful to measure the maximum local memory requirement of any
node. This is because most multicomputers have equal size local memory on each processor.

To determine the effectiveness with which the multicomputer nodes are being used, one
also measures the quantities speedup and efficiency. Let t0 be the time required to solve the given
problem on a single node using the conventional uniprocessor algorithm. Then, the speedup, Sp ,
using p processors is:

Sp =
tp

t 0___

Note that t 1 may be different from t0 as in arriving at our parallel algorithm, we may not start with
the conventional uniprocessor algorithm.

The efficiency, Ep , with which the processors are utilized is:

Ep =
p

Sp___

Barring any anomalous behavior as reported in Kumar, Nageshwara, and Ramesh (1988),
Lai and Sahni (1984), Li and Wah (1986), and Quinn and Deo (1986), the speedup will be
between 0 and p and the efficiency between 0 and 1. To understand the source of anomalous
behavior that results in Sp> p and Ep> 1, consider the search tree of Figure 1.12. The problem is
to search for a node with the characteristics of C. The best uniprocessor algorithm (i.e., the one
that works best on most instances) might explore subtree B before examining C. A two processor
parallelization might explore subtrees B and C in parallel. In this case, t2 = 2 (examine A and C)
while t 0 = k where k −1 is the number of nodes in subtree B. So, S2= k/2 and E2= k/4.

B C

A

Figure 1.12 Example search tree

-- --

16 CHAPTER 1. INTRODUCTION

One may argue that in this case t 0 is really not the smallest uniprocessor time. We can do
better by a breadth first search of the tree. In this case, t0 = 3, t2 = 2, S2 = 1.5, and E2 = 0.75.
Unfortunately, given a search tree there is no known method to predict the optimal uniprocessor
search strategy. Thus in the example of Figure 1.12, we could instead be looking for a node D
that is at the bottom of the leftmost path from the root A. So, it is customary to use for t0 the run
time of the algorithm one would normally use to solve that problem on a uniprocessor.

While measured speedup and efficiency are useful quantities, neither give us any informa-
tion on the scalability of our parallel algorithm to the case when the number of processors/nodes
is increased from that currently available. It is clear that, for any fixed problem size, efficiency
will decline as the number of nodes increases beyond a certain threshold. This is due to the una-
vailability of enough work, i.e., processor starvation. In order to use increasing numbers of pro-
cessors efficiently, it is necessary for the work load (i.e., t 0) and hence problem size to increase
also (Gustafson 1988). An interesting property of a parallel algorithm is the amount by which the
work load or problem size must increase as the number of processors increases in order to main-
tain a certain efficiency or speedup. Kumar, Nageshwara, and Ramesh (1988) have introduced
the concept of isoefficiency to measure this property. The isoefficiency, ie(p), of a parallel
algorithm/program is the amount by which the work load must increase to maintain a certain
efficiency.

We illustrate these terms using matrix multiplication as an example. Suppose that two n×n

matrices are to be multiplied. The problem size is n. Assume that the conventional way to per-
form this product is by using the classical matrix multiplication algorithm of complexity O(n3).
Then, t0 = cn 3 and the work load is cn 3 . Assume further that p divides n. Since the work load can
be evenly distributed over the p processors when p ≤ n2,

tp =
p

t 0___ + tcom

where tcom represents the time spent in interprocessor communication. So,
Sp = t0/tp = pt 0/(t0+ptcom) and Ep = Sp/p = t 0/(t 0+ptcom) = 1/(1+ptcom /t0). In order for Ep to be a con-
stant, ptcom /t 0 must be equal to some constant 1/α. So, t0 = work load = cn 3 = αptcom . In other
words, the work load must increase at least at the rate αptcom to prevent a decline in efficiency. If
tcom is ap (a is a constant), then the work load must increase at a quadratic rate. To get a quadratic
increase in the work load, the problem size n needs increase only at the rate p2/3 (or more accu-
rately, (aα/c)1/3p2/3).

Barring any anomalous behavior, the work load t0 for an arbitrary problem must increase at
least linearly in p as otherwise processor starvation will occur for large p and efficiency will
decline. Hence, in the absence of anomalous behavior, ie(p) is Ω(p). Parallel algorithms with
smaller ie(p) are more scalable than those with larger ie(p).

The concept of isoefficiency is useful because it allows one to test parallel programs using a
small number of processors and then predict the performance for a larger number of processors.
Thus it is possible to develop parallel programs on small hypercubes and also do a performance
evaluation using smaller problem instances than the production instances to be solved when the
program is released for commercial use. From this performance analysis and the isoefficiency
analysis one can obtain a reasonably good estimate of the program’s performance in the target

-- --

1.3. PERFORMANCE MEASURES 17

commercial environment where the multicomputer may have many more processors and the
problem instances may be much larger. So with this technique we can eliminate (or at least
predict) the often reported observation that while a particular parallel program performed well on
a small multicomputer it was found to perform poorly when ported to a large multicomputer.

-- --

18 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamental Operations

2.4 Data Broadcasting

In a data broadcast we begin with data in the A register of processor zero of the hypercube. This
data is to be transmitted to the A register of each of the remaining processors in the hypercube.
This may be accomplished using the binary tree transmitting scheme of Figure 2.13. This figure
is for the case of a dimension 3 hypercube. The data to be broadcast is initially only in processor
0 (root of the broadcast tree). It is transmitted along bit 0 to processor 1 (001). This is denoted
by the arrow from the root to its right child. Now processors 0 and 1 (level 2 processors) have
the data. Both transmit along bit 1. The data is now contained in all level 3 processors (0, 2, 1,
3). These processors now send the data to their neighbor processors along bit 2. As a result, all
processors in the hypercube have the data.

The code of Program 2.1 uses the broadcast tree idea to perform a data broadcast in a
hypercube of dimension d. This code requires half the hypercube processors to send data in each
transmittal step. While this is actually required only in the last transmittal step, the code is
slightly simplified by permitting half the processors to transmit in each step.

Note that if the data to be broadcast originates in processor k then the broadcast can be
accomplished by modifying the selectivity function of Program 2.1 from (ji = 0) to (ji = ki). In
case we have available a special value null that is not otherwise an allowable value for A, then an
alternate (and simpler) broadcasting scheme is possible. In this we begin by setting A to null in
all processors other than the one that contains the data to be broadcast. The selectivity function
of Program 2.1 is changed to (A (j) ≠ null). The resulting broadcasting algorithm is given in Pro-
gram 2.2. The complexity of all versions of the broadcasting algorithm that we have discussed is
Ο(d).

-- --

2.2. WINDOW BROADCAST 19

000 100 010 110 001 101 011 111

000 010 001 011

000 001

000

Arrows indicate a data transfer

Figure 2.13 Broadcasting in a dimension 3 hypercube

procedure Broadcast (A, d);
{Broadcast data in the A register of PE 0 to the remaining}
{PE’s of the dimension d hypercube.}

for i := 0 to d − 1 do
A (j (i)) ← A (j), (ji = 0);

end; {of Broadcast}

Program 2.1 Data broadcast

procedure Broadcast (A, d, k);
{Broadcast data in the A register of PE k to the remaining}
{PE’s of the dimension d hypercube.}
{Assume there is a special value null}

A (j) := null, (j ≠ k);
for i := 0 to d − 1 do

A (j (i)) ← A (j), (A (j) ≠ null);
end; {of Broadcast}

Program 2.2 Data broadcast using a null value

-- --

20 CHAPTER 2. FUNDAMENTAL OPERATIONS

2.5 Window Broadcast

Suppose that a dimension d hypercube is partitioned into windows of size 2k processors each.
Assume that this is done in such a way that the processor indices in each window differ only in
their least significant k bits. As a result, the processors in each window form a subhypercube of
dimension k. In a window broadcast we begin with data in the A register of a single processor in
each window. This is the same relative processor for each window (i.e., its least significant k bits
are the same across all windows). In each window the data from the window’s originating pro-
cessor is to be broadcast to all remaining processors in the window.

As an example consider the case d = 3, k = 2, and the originating PE in each window has
bits 0 and 1 equal to 0. We have two windows of 4 processors each. The processors in one win-
dow have their most significant bit equal to 0 while those in the other window have this bit equal
to one. The originating processor for the first window is 0 while that for the second is 4. Data
from processor 0 is to be broadcast to processors 1, 2, and 3 and data from processor 4 is to be
broadcast to processors 5, 6, and 7.

A window broadcast can be done in Ο(k) time using Program 2.3. This is almost identical
to Program 2.1.

procedure WindowBroadcast (A, k);
{Broadcast in windows of 2k processors. The originating processor in}
{each window has least significant bits m0, m1, . . . , mk −1.}
{Each window is a subhypercube.}

for i := 0 to k − 1 do
A (j (i)) ← A (j), (ji = mi);

end; {of WindowBroadcast}

Program 2.3 Window broadcast

As in the case of Program 2.1, Program 2.3 can be generalized to broadcast data from
different relative processors in different windows by using a special value null. This generaliza-
tion is given in Program 2.4. The procedure assumes that initially selected (j) is true iff processor j

is the originating processor for its window. The complexity of Program 2.4 is also Ο(k).

2.6 Data Sum

Assume that a dimension d hypercube is partitioned into subhypercubes (or windows) of dimen-
sion k as in the case of window broadcast. The data sum operation sums the A register data of all
processors in the same window. The result is left in the A register of the processor with least
index in each window. I.e., data sum computes:

sum (iW) =
j =0
Σ

W −1

A (iW +j), 0 ≤ i < P /W

where W = 2k and P = 2d.

-- --

2.3. DATA SUM 21

procedure WindowBroadcast (A, k);
{Broadcast in windows of 2k processors. The originating processor in}
{each window has selected = true. The special value null is used.}
{Each window is a subhypercube.}

A (j) := null, (selected (j) = false);

for i := 0 to k − 1 do
A (j (i)) ← A (j), (A (j) ≠ null);

end; {of WindowBroadcast}

Program 2.4 Window broadcast from arbitrary processors using null value

The data sum operation can be performed in Ο(k) time by first summing in subwindows of
size 2, then of size 4, and so on until the subwindow size becomes W. Consider the example of
Figure 2.14. This shows the computation of data sum on an eight processor SIMD hypercube.
The window size is also eight. The leaf nodes represent the initial configuration. The number
outside a node is the index of the processor it represents and the number inside a node is the A

value of the corresponding processor. First, pairs of processors add their A values. For this the
odd processor in each pair transmits its A value to the even processor in the pair. This data
transfer is shown by arrows in Figure 2.14. Following the addition in each pair we have the
configuration of the next level of Figure 2.14. In the next step the processor pairs (0, 2) and (4, 6)
compute their sums. This corresponds to the sum of the initial data in the two subwindows of
size 4. Processor 2 transmits the sum it computed in the previous step to processor 0 and proces-
sor 6 tranmits this sum to processor 4. Now processor 4 transmits its subwindow sum (16) to pro-
cessor 0 which computes the overall sum 26.

2 4 3 1 5 2 8 1

0 1 2 3 4 5 6 7

6 4 7 90 2 4 6

10 160 4

260

Arrows indicate a data transfer

Figure 2.14 Data sum in a dimension 3 hypercube

-- --

22 CHAPTER 2. FUNDAMENTAL OPERATIONS

The code is given in Program 2.5. Each processor has a variable awake which tells it
whether or not it is still involved in the summing process. Initially all processors are awake.
After the first data transfer step only the even processors remain awake. Following the next data
transfer step only processors with their two least significant bits equal to zero remain awake and
so on. In the end only processor 0 is awake. The complexity of SIMDDataSum is Ο(k).

procedure SIMDDataSum (A, k);
{Sum the A register data in windows of 2k processors.}
{The sum is left in the window processor with least index.}
{Each window is a subhypercube.}

awake (j) := true;
for i := 0 to k − 1 do
begin

B (j (i)) ← A (j), ((ji = 1) and awake (j));
awake (j) := false, (ji = 1);
A (j) := A (j) + B (j), (awake (j));

end;
end; {of SIMDDataSum}

Program 2.5 Data sum in subhypercubes of dimension k

By removing the selection functions from Program 2.5 we get a procedure which computes
the window sum in each processor of the hypercube. This is given in Program 2.6. It is actually
slightly easier to have all processors compute the window sum than to just have a single proces-
sor do this as in Program 2.5.

procedure SIMDAllSum (A, k);
{Sum the A register data in all processors of windows of 2k processors.}
{Each window is a subhypercube.}

for i := 0 to k − 1 do
begin

B (j (i)) ← A (j);
A (j) := A (j) + B (j);

end;
end; {of SIMDAllSum}

Program 2.6 Procedure to have all window processors compute the sum

-- --

2.4. PREFIX SUM 23

2.7 Prefix Sum

The assumptions and initial condition are the same as for the data sum operation. If l = iW + q,
0 ≤ q < W, is a processor index, then processor l is the q’th processor in window i. This processor
is to compute:

S (iW + q) =
j =0
Σ
q

A (iW +j), 0 ≤ i < P /W, 0 ≤ q < W

The prefix sums in windows of size W = 2k may be easily computed if we know the follow-
ing values in each of the size 2k −1 subwindows that make up the 2k window:

(1) Prefix sums in the 2k −1 subwindow

(2) Sum of all A values in the 2k −1 subwindow

The prefix sums relative to the whole size W window are obtained as below:

(1) If a processor is in the left 2k −1 subwindow, then its prefix sum is unchanged.

(2) The prefix sum of a processor in the right subwindow is its prefix sum when considered as a
member of a 2k −1 window plus the sum of the A values in the left subwindow.

Figure 2.15 gives an example prefix computation that uses this strategy. The number of
processors and the window size W = 2k are both 8. Line 0 gives the initial A values. The prefix
sums in the current windows are stored in the S registers and the sum of the A values of the pro-
cessors in the current windows are stored in the T registers. We begin with windows of size 1.
The initial S and T values are given in lines 1 and 2, respectively. Next, the S and T values for
windows of size 2 are obtained. These are given in lines 3 and 4. Line 5 and 6 give the S and T

values when the window size is 4 and lines 9 and 10 give these values for the case when the win-
dow size is 8. Program 2.7 is the resulting procedure. Its complexity is Ο(k).

2.8 Shift

The operation shift (A, i, W) shifts the data in the A register of the processors counterclockwise by
i processors in windows of size W where W is a power of 2. In the case of an SIMD hypercube of
size P = 2d the processors in counterclockwise order are 0, 1, 2, . . . , P −1, 0. So a shift of i with a
window size of W = P results in moving data from PE(j) to PE((j +i) mod P). In the case of an
MIMD hypercube the PE ordering corresponds to that obtained by mapping a chain into a hyper-
cube using a Gray code (Section 1.2.2). The counterclockwise ordering is gray (0,d), gray (1,d),
 . . . , gray (P −1,d), gray (0,d).

-- --

24 CHAPTER 2. FUNDAMENTAL OPERATIONS

line 0 1 2 3 4 5 6 7
PE

0 2 4 3 1 5 2 8 1 A

1 2 4 3 1 5 2 8 1 S

2 2 4 3 1 5 2 8 1 T

3 2 6 3 4 5 7 8 9 S

4 6 6 4 4 7 7 9 9 T

5 2 6 9 10 5 7 15 16 S

6 10 10 10 10 16 16 16 16 T

7 2 6 9 10 15 17 25 26 S

8 26 26 26 26 26 26 26 26 T

Figure 2.15 Example to compute prefix sums in an SIMD hypercube

procedure SIMDPrefixSum (A, k, S);
{Compute the prefix sums of A in windows of size 2k}
begin

{Initialize for size 1 windows}
S (i) := A (i);
T (i) := A (i);

{Compute for size 2b +1 windows}
for b := 0 to k −1 do
begin

B (i (b)) ← T (i);
S (i) := S (i) + B (i), (ib = 1);
T (i) := T (i) + B (i);

end;
end; {of SIMDPrefixSum}

Program 2.7 SIMD prefix sums

2.8.1 SIMD Shift

-- --

2.5. SHIFT 25

The strategy (Kumar and Krishnan 1987, Ranka and Sahni 1988b) is to reduce a shift in a
window of size W into two independent shifts in windows of size W /2. By using this repeatedly
we end up with shifts in windows of size one. Shifts in windows of this size are equivalent to
null shifts. Let the current window size be 2M (W is the initial window size and M = W /2 at the
start). For the reduction, we consider two cases: (1) 0 < i ≤ M and (2) M < i <2M. In case i is not in
this range, it may be replaced by i mod 2M.

(1) First consider an example. Suppose that M = 4 and i = 3. Then the initial configuration of
line 1 of Figure 2.16 is to be transformed into that of line 2. The 8 processors may be parti-
tioned into two windows of size 4 each. The left window consists of processors 0 through 3
and processors 4 through 7 make up the right window. Examining the initial and final
configurations, we notice that b, c, and d are initially in the left window and they are in the
right window after the shift. Also, f, g, and h are initially in the right window and are in the
left window following the shift. If we exchange b, c, and d with f, g, and h, respectively,
then we obtain the configuration of line 3. Now each of the two windows of size 4 has the
data it needs for its final configuration. Furthermore, a shift of 3 in each window will result
in the final configuration.

line 0 1 2 3 4 5 6 7

PE

1 a b c d e f g h

2 f g h a b c d e

3 a f g h e b c d

4 c d e f g h a b

5 e f c d a b g h

Figure 2.16 SIMD shift example

To perform a shift of i, 0 < i ≤ M, in a window of size W = 2M, we consider its two
subwindows (left and right) of size M each. Following the shift some of the elements ini-
tially in the left subwindow are found in the right subwindow and an equal number initially
in the right subwindow are found in the left subwindow. Let A and C, respectively, denote
the elements of the left and right subwindows that do not change subwindows as a result of
the shift. Let B and D, respectively, denote the remaining elements of the left and right
subwindows (see Figure 2.17). One may verify that B and D each contain i elements and
both consist of elements beginning at position first = M − i and ending at position last =
M − 1 relative to the start of the respective subwindow. It is easy to see that if we exchange

-- --

26 CHAPTER 2. FUNDAMENTAL OPERATIONS

B and D, then the desired final configuration can be obtained by performing a shift of
i mod M in each of the size M subwindows. The mod M is necessary to handle the case
i = M.

A B C D

0 M −1 M 2M −1

first last first last

i i

Exchange blocks B and D

A D C B

Shift by i mod M in size M windows

D A B C

Figure 2.17 Steps in performing a shift of i, 0 < i ≤ M

(2) Consider the initial configuration of line 1 of Figure 2.16. This time assume that i = 6. The
final configuration is shown in line 4. Now a, b, e, and f change windows between the ini-
tial and final configurations.

As before, we consider the elements in the two subwindows of the size W window.
Let B and D, respectively, denote the elements of the left and right subwindows that do not
change subwindows as a result of the shift. Let A and C, respectively, denote the remaining
elements of the left and right subwindows (see Figure 2.18). One may verify that A and C

each contain 2M − i elements and both consist of elements beginning at position first = 0 and
ending at position last = 2M − i − 1 of the respective subwindow. We see that if we
exchange A and C, then the desired final configuration can be obtained by performing a shift
of i mod M in each of the size M subwindows.

The preceding discussion results in the procedure of Program 2.8. Here RightmostOne (i) is a
function that returns the least significant bit of i that is one. In case i = 0, it returns −1. So, Right-

mostOne (12) = 2 and RightmostOne (9) = 0. The complexity of SIMDShift is Ο(logW). In case the
shift amount i is a power of 2, the complexity becomes Ο(log(W /i)).

-- --

2.5. SHIFT 27

A B C D

0 M −1 M 2M −1

first last first last

2M −i 2M −i

Exchange blocks A and C

C B A D

Shift by i mod M in size M windows

B C D A

Figure 2.18 Steps in performing a shift of i, M < i < 2M

2.8.2 MIMD Shift

On an MIMD hypercube a shift of i is obtained by making a sequence of shifts each of
which is a power of 2 shift (Ranka and Sahni 1988b). So, for example, a shift of 11 is obtained
by performing shifts of 8, 2, and 1 in any order. A power of 2 shift can be made in two steps.
Suppose we are to perform SHIFT (A,i,W) where i and W are both powers of 2. We may assume
that i < W (if not, replace i by i mod W). Each size W window is comprised of some number of
size i subwindows. Because of the Gray code indexing, the processor indices in any subwindow
differ from those in the adjacent subwindow in exactly one bit. Furthermore, after changing this
bit, the indices in one subwindow are in the reverse order of those in the adjacent window. In
Figure 2.19 the processor indices of an eight processor hypercube are provided in Gray code
order. The four windows of size two are defined by the processor pairs {000, 001}, {011, 010},
{110, 111}, and {101, 100}. Changing bit 1 of the first pair gives the pair {010, 011} which is
the reverse of the second pair; changing bit 2 of the second pair gives {111, 110} which is the
reverse of the third pair; changing bit 1 of the third pair gives the reverse of the fourth pair; and
changing bit 2 of the fourth pair gives the reverse of the first pair.

With the above observation we arrive at the following two step algorithm to perform a shift
of i when i is a power of 2:

-- --

28 CHAPTER 2. FUNDAMENTAL OPERATIONS

procedure SIMDShift (A, i, W);
{Counterclockwise shift of A by i in windows of size W.}
{SIMD version.}

i := i mod W;
b := RightmostOne (i);
M := W; k := log2M;
for j := k −1 downto b do
begin

M := M div 2;
if i <= M then begin

first := M − i;
last := M − 1;

end
else begin

first := 0;
last := 2*M − i − 1;

end;
{p is this processor’s index, a is position in size M window}
a := p mod M;
A (p (j)) ← A (p), (first ≤ a ≤ last);
i := i mod M; {remaining shift}

end; {of for loop}
end; {of SIMDShift}

Program 2.8 SIMD shift

Step 1 Each processor in a subwindow of size i routes to the clockwise adjacent subwindow of
size i in each window of size W.

Step 2 If i > 1, then in each subwindow of size i the data is reversed by exchanging between
the subwindows of size i /2 that make up the size i subwindow.

Consider a shift of i = 4 in an eight processor hypercube with W = 8. Line 1 of Figure 2.19
gives the initial configuration. There are two subwindows of size 4 ({000, 001, 011, 010} and
{110, 111, 101, 100}). The first subwindow routes to the second along bit 2 and the second
routes to the first along bit 2. The result is given in line 2 of Figure 2.19. Now the data is in the
right size 4 subwindow but in the reverse order. To get the right order data is exchanged between
processors pairs of subwindows of size 2. Thus the processors in the pair ({000, 001}, {011,
010}) as well as those in the pair ({110, 111}, {101, 100}) exchange along bit 1. The result is the
configuration of line 3 of the figure.

As another example, consider the case of i = 2 and W = 8. The initial configuration is that
of line 1 of Figure 2.19. First, each size 2 subwindow sends its data to the size 2 subwindow that
is counterclockwise from it. The subwindow {000, 001} transmits to {011, 010} along bit 1;
{011, 010} transmits to {110, 111} along bit 2; {110, 111} transmits to {101, 100} along bit 1;
and {101, 100} transmits to {000, 001} along bit 2. The result is shown in line 4 of Figure 2.19.

-- --

2.5. SHIFT 29

line 000 001 011 010 110 111 101 100

PE

1 a b c d e f g h

2 h g f e d c b a

3 e f g h a b c d

4 h g b a d c f e

5 g h a b c d e f

Figure 2.19 MIMD shift example

To complete the shift, pairs of windows of size 1 that make up a size 2 window exchange. Fol-
lowing this exchange we get the configuration of line 5.

From the above it follows that when i is a power of 2 the shift can be done in Ο(1) time.
When i is not a power of 2, a shift of i takes Ο(log2W) time as i can have at most log2W ones in its
binary representation. We note that if the number of ones in the binary representation of i

exceeds log2W/2 then it is faster to perform a clockwise shift of W − i. The algorithm for clock-
wise shifts is similar to that for counterclockwise shifts.

2.9 Data Circulation

Consider a P = 2p processor hypercube. We are required to circulate the data in the A register of
these PEs so that this data visits each of the P processors exactly once. An optimal circulation
algorithm for MIMD hypercubes results by repeatedly shifting by 1. An optimal circulation for
SIMD hypercubes results from the use of the exchange sequence Xp (Dekel, Nassimi, and Sahni
1981) defined as

X1 = 0, Xq = Xq −1, q −1, Xq −1 (q > 1)

So, X2 = 0, 1, 0 and X3 = 0, 1, 0, 2, 0, 1, 0. The exchange sequence Xq essentially treats a q

dimensional hypercube as two q −1 dimensional hypercubes. Data circulation is done in each of
these in parallel using Xq −1. Next an exchange is done along bit q −1. This causes the data in the
two halves to be swapped. The swapped data is again circulated in the two half hypercubes using
Xq −1. Let f (q, i) be the i’th number (left to right) in the sequence Xq , 1 ≤ i < 2q. So, f (2,1) = 0,
f (2,2) = 1, f (2,3) = 0, etc. The resulting SIMD data circulation algorithm is given in Program
2.9.

-- --

30 CHAPTER 2. FUNDAMENTAL OPERATIONS

procedure circulate (A);
{Data circulation in a P = 2p processor SIMD hypercube}
begin

for i := 1 to P − 1 do
A (j f (p, i)) ← A (j);

end; {of circulate}

Program 2.9 Data circulation in an SIMD hypercube

An example of data circulation in an eight processor hypercube is given in Figure 2.20.
Line 0 gives the initial contents of the A registers and line i gives the contents following iteration
i of the for loop of Program 2.9, 1 ≤ i < P. Line i also gives the value of f (3,i).

line 0 1 2 3 4 5 6 7 f (3,i)

PE

0 a b c d e f g h

1 b a d c f e h g 0

2 d c b a h g f e 1

3 c d a b g h e f 0

4 g h e f c d a b 2

5 h g f e d c b a 0

6 f e h g b a d c 1

7 e f g h a b c d 0

Figure 2.20 SIMD circulate example

The function f can be computed by the control processor in Ο(P) time and saved in an array
of size P−1 (actually it is convenient to compute f on the fly using a stack of height logP). The
following theorem allows each processor to compute the origin of the current A value.

-- --

2.6. DATA CIRCULATION 31

?H{origin} (Ranka and Sahni 1988b) Let A[0], A[1],, A[2p− 1] be the values in
A (0), A (1),, A (2p− 1) initially. Let index (j, i) be such that A[index (j, i)] is in A (j) following
the i’th iteration of the for loop of Program 2.9. Initially, index (j, 0) = j. For every
i, i> 0, index (j, i) = index (j, i − 1) ⊕ 2f (p, i) (⊕ is the exclusive or operator).

Proof: We prove this using mathematical induction. The theorem is trivially true for i = 1.
Assume the theorem is true for i, l ≥ i > 0. Thus

index (j, l) = index (j, l − 1) ⊕ 2f (p, l)

= index (j, l − 2) ⊕ 2f (p, l − 1) ⊕ 2f (p, l)

= j⊕ 2f (p, 1) . . . ⊕ 2f (p, l − 1) ⊕ 2f (p, l)

Similarly
index (j (f (p, l + 1)) , l) = j (f (p, l +1))⊕ 2f (p, 1) . . . ⊕ 2f (p, l − 1) ⊕ 2f (p, l)

Now from procedure circulate (Program 2.9), we have

index (j, l + 1) = index (j (f (p, l + 1)) , l)

= j (f (p, l +1))⊕ 2f (p, 1) . . . ⊕ 2f (p, l − 1) ⊕ 2f (p, l)

= j ⊕ 2f (p, l +1)⊕ 2f (p, 1) . . . ⊕ 2f (p, l − 1) ⊕ 2f (p, l)

= j⊕ 2f (p, 1) . . . ⊕ 2f (p, l)⊕2f (p, l − 1)⊕2 f (p, l +1)

(Since ⊕ is commutative and associative)

= index (j, l) ⊕ 2f (p, l + 1)

Let us apply the theorem to processor 0 of Figure 2.20. Initially, we have index (0,0) = 0.
From the theorem it follows that index (0,1) = 0 ⊕ 2f (3,1) = 0 ⊕ 1 = 1; index (0,2) = 1 ⊕ 2f (3,2) = 1 ⊕ 2
= 3; index (0,3) = 3 ⊕ 2f (3,3) = 3 ⊕ 1 = 2; index (0,4) = 2 ⊕ 2f (3,4) = 2 ⊕ 4 = 6; index (0,5) = 6 ⊕ 2f (3,5) =
6 ⊕ 1 = 7; etc.

Some of our later algorithms will require the circulating data to return to the originating
PEs. This can be accomplished by a final data exchange along the most significant bit. For con-
venience, we define f (p, 2p) = p − 1.

-- --

32 CHAPTER 2. FUNDAMENTAL OPERATIONS

2.10 Even, Odd, And All Shifts

In some applications it is desirable to shift the A register data by all possible even distances, or all
possible odd distances, or by all possible distances. However, the order in which the shifts are
performed is not specified. For example, in an eight processor hypercube the possible even shifts
are 2, 4, and 6. We are free to perform these in any order. So, the first shift may be 6, the next 2,
and the last 4. In an MIMD hypercube the three sets of shifts can be performed easily in time
linear in the total number of shifts. First, all shifts are obtained in linear time by repeatedly shift-
ing by 1. To get all odd shifts, we repeatedly shift by 1 and use only every other shift. The same
strategy obtains all even shifts. Performing all shifts in the above three categories in linear time
on an SIMD hypercube is more difficult as we can transfer data on one dimension at a time only.

2.10.1 All Even Shifts

In a P processor hypercube there are exactly (P/2) − 1 different even shifts (recall that P = 2k

is a power of 2). These may be assumed to be in the range [1, P − 1]. An even shift, i, that is not
in this range is equivalent to the the even shift i mod P which is either 0 or in the above range. A
shift of zero is equivalent to no shift.

A shift distance sequence, Ek, is a sequence d1d2
 . . . d2k −1− 1 of positive integers such that a

clockwise shift of d1, followed by one of d2, followed by one of d3 , etc. covers all even length
shifts in the range [1, P − 1] = [1, 2k−1]. Note that E0 = E1 = null as there are no even length shifts
in the range [1, 2k−1] when k = 0 or 1. When k = 2, there is one even shift in the range [1, 2k−1] =
[1, 3]. This is a shift of 2. So, E2 = 2. This transforms the length P = 22 sequence abcd into the
sequence cdab. In general, the choice Ek = 2, 2, 2, . . . will serve to obtain all even length shifts.
From the complexity stand point this choice is poor as each shift of 2 requires Ο(log(P /2)) unit
routes. Better performance is obtained by defining

E0 = E1 = null, E2 = 2

Ek = InterLeave (Ek −1 , 2k −1), k>2

where InterLeave is an operation that inserts a 2k −1 in front of Ek −1, at the end of Ek −1, and between
every pair of adjacent distances in Ek −1. Thus,

E3 = Interleave (E2 , 4) = 4 2 4

E4 = Interleave (E3 , 8) = 8 4 8 2 8 4 8

When the shift sequence Ek is used, the effective shift following di is (
j=1
Σ

i

dj) mod 2k. Thus

when E3 is used on the sequence abcdefgh, we get

-- --

2.7. EVEN, ODD, AND ALL SHIFTS 33

d sequence effective shift
4 efghabcd 4
2 cdefghab 6
4 ghabcdef 2 = 10 mod 8

In the shift sequence Ek, shifts of P /2 are done P /4 times (recall that P = 2k); shifts of P /4 are
done P /8 times; shifts of P /8 are done P /4 times; etc. Since shifts of P /2 cost less than shifts of
P /4 which in turn cost less than shifts of P /8, etc., we expect the shift sequence Ek to cost
significantly less than performing a sequence of length 2 shifts.

?H{even} (Ranka and Sahni 1988b) Let E [k, i] be di in the sequence Ek , k≥2. Let

ESUM [k, i] = (
j=1
Σ

i

E [k, j]) mod 2k. Then {ESUM [k, i] � 1≤i ≤2k −1−1} = {2, 4, 6, 8, ..., 2k− 2}.

Proof: The proof is by induction on k. The theorem is clearly true for k = 2. Let it be true for
k = l ≥ 2. We prove that it will be true for k = l + 1. Hence by induction it will be true for all
values of k, k ≥ 2.

We prove the following statements which prove the required result.

(1) ESUM [l + 1, i] < 2l +1.

(2) ESUM [l + 1, i] is even.

(3) ESUM [l + 1, i] ≠ 0

(4) ESUM [l + 1, i] ≠ ESUM [l + 1, k] if i ≠ k

(1) and (2) follow directly from the definitions of ESUM [l + 1, i] and El +1. We prove (3)
and (4) by contradiction. Suppose ESUM [l + 1, i] = 0 for some value of i, say a > 1 (the case of
a = 1 is obvious as E [l + 1, 1] ≠ 0). Then,

(
j =1
Σ
a

E [l + 1, j]) mod 2l +1 = 0

(≡)(
j =1
Σ

�
a /2�

E [l, j] + � a /2 � 2l) mod 2l +1 = 0

(=>)(
j =1
Σ

�
a /2�

E [l, j]) mod 2l = 0

(≡)ESUM [l, � a /2 �] = 0

Contradiction (as � a /2 � > 0 and ESUM [l, i] > 0 for i > 0).

If k = i +__ 1 then (4) is true by the definition of ESUM. Suppose
ESUM [l + 1, i] = ESUM [l + 1, k] , i ≠ k, k ≠ i +__ 1. So,

(
j =1
Σ

i

E [l + 1, j]) mod 2l +1 = (
j =1
Σ
k

E [l + 1, j]) mod 2l+1

(≡)(
j =1
Σ

�
i /2�

E [l, j] + � i /2 � 2l) mod 2l+1 =(
j =1
Σ

�
k /2�

E [l, j] + � k /2 � 2l) mod 2l+1

-- --

34 CHAPTER 2. FUNDAMENTAL OPERATIONS

(=>)(
j =1
Σ

�
i /2�

E [l, j]) mod 2l = (
j =1
Σ

�
k /2�

E [l, j]) mod 2l

(≡)ESUM [l, � i /2 �] = ESUM [l, � k /2 �]

Contradiction (as � i /2 � ≠ � k /2 �).

?H{evenC} (Ranka and Sahni 1988b) The shift sequence Ek can be done in 2(2k− k −1) unit
routes, k≥2.

Proof: Procedure SIMDShift (Program 2.8) performs a power of 2 shift 2i in a window of size 2k

using 2log(2k/2i) = 2(k − i) unit routes (assuming unidirectional links). Let cost(Ek) be the number
of unit routes required by the sequence Ek. The 2k −2 , 2k −1’s in Ek take 2 routes each. The cost of
the remaining shifts in Ek is cost(Ek −1) + 2(2k −2−1). The additive term 2(2k −2−1) accounts for the
fact that each of the remaining 2k −2−1 routes is done in a window of size 2k rather than 2k −1 (as
assumed for Ek −1). Hence,

cost (Ek) =

�� �
2
cost (Ek −1) + 2(2k −2− 1) + 2*2k −2

, k =2
, k >2

So, cost (Ek) = 2(2k − k − 1), k≥2. .

The result of the preceding theorem is important as it says that the average cost of rotation

in Ek is
2k −1−1

2(2k − k − 1)___________ < 4. So, we can perform even length rotations with Ο(1) average cost.

2.10.2 All Odd Shifts

All odd shifts can be performed in linear time by first performing a shift of 1 and then per-
forming all even shifts. An alternate is to develop a shift sequence (like Ek) that obtains all odd
shifts.

2.10.3 All Shifts

Let Fk be the sequence obtained by dividing each distance in Ek by 2. So,
F0= F1= null, F2= 1, F3= 2, 1, 2, etc.

?H{all} (Ranka and Sahni 1988b) Let F [k, j] be the j’th distance in Fk and let

FSUM [k, i] = (
j=1
Σ

i

F [k, j]) mod 2k −1.

(1) {FSUM [k, i] � 1≤i≤2k −1−1} = {1, 2, 3, ..., 2k −1−1}

(2) All the shifts in Fk can be done in a window of size 2k −1 in 2(2k − k −1) unit routes.

Proof: Similar to the proof of the preceding two theorems.

-- --

2.8. CONSECUTIVE SUM 35

2.11 Consecutive Sum

Suppose that a hypercube is tiled by windows of size M where M is a power of 2 and that each
processor has the M values X [0 .. M −1]. The consecutive sum operation is performed in windows
of size M. The j’th processor in such a window is to compute the sum of the X [j] values in the M

processors in its window. I.e., the j’th processor in a window computes:

S (j) =
i =0
Σ

M −1

X [j](i), 0 ≤ j < M

where i refers to the i’th processor in the window.

The S’s can be computed by having the j’th processor of the window originate an S token
that is initialized to X j, 0 ≤ j < M (Ranka and Sahni 1988d). The S tokens are then circulated
through the size M window. Each time the token that originated in the j’th processor of the win-
dow reaches a processor it adds to itself the X [j] value in this processor. Following the circula-
tion the S tokens are routed back to their originating processors.

The algorithm for an SIMD hypercube is given in Program 2.10. f is the SIMD circulation
function of Section 2.6. From ?H{origin} it follows that in (p) gives the index (within the win-
dow) of the PE from which the current S originated. The complexity of this algorithm is Ο(M).
The algorithm for MIMD hypercubes is similar. It uses repeated shifts of −1 to perform the circu-
lation of the S’s. Its complexity is also Ο(M).

procedure SIMDConsecutiveSum (X, S, M);

{Consecutive sum of X in windows of size M}
{M is a power of 2}
begin

in (p) := p mod M; {relative index in size M window}
S (p) := X [in (p)](p);

{Circulate S computing the desired sum}
for i := 1 to M −1 do
begin

l := f (log2M, i);
S (p) ← S (p (l));
in (p) := in (p) ⊕ 2l;
S (p) := S (p) + X [in (p)];

end;

{move S’s back to originating PEs}
j := log2M − 1;
S (p (j)) ← S (p);

end; {of SIMDConsecutiveSum}

Program 2.10 SIMD consecutive sum

-- --

36 CHAPTER 2. FUNDAMENTAL OPERATIONS

2.12 Adjacent Sum

This operation is defined in Kumar and Krishnan (1987). For each PE, p, 0 ≤ p < P, the sum

T (p) =
i=0
Σ

M −1

A [i]((p + i) mod P)

is to be computed.

As mentioned earlier, every hypercube of size P can be viewed as consisting of P/M subhy-
percubes (blocks) each of size M. For every PE p, some (or all) of the A’s needed to compute T (p)

are in the block containing PE p. The remainder are in the next block of PEs. The strategy to
compute T is as follows:

(1) Each PE, p, begins with two variables S and T (initially 0). These values circulate through
the M PEs in the block. T accumulates the A values in the block needed in the sum for T (p).
S accumulates the A values needed for T ((p − M) mod P).

(2) The S values are shifted clockwise by M positions and added to the T values.

The resulting algorithm for MIMD hypercubes is straightforward. The algorithm for SIMD
hypercubes is given in Program 2.11. Recall that at the end of Section 2.6 we extended the
definition of f (p, i) to include f (p, 2p) = p − 1. The complexity of the algorithm is
Ο(M + log(P /M)).

procedure SIMDAdjacentSum(A, T, M);
{Adjacent sum in an SIMD hypercube}
begin

S := 0; T := 0;
in (p) := p mod M; {in (p) = index of PE p within block of size M}
for i := 1 to M do {circulate S and T}
begin

l := f (log2M, i);
S (p) ← S (p (l));
T (p) ← T (p (l));
in (p) := in (p) ⊕ 2l;
T := T + A [p mod M−in (p)], (in (p) ≤ p mod M);
S := S + A [M+p mod M−in (p)], (in (p) > p mod M);

end;
SIMDShift (S, −M,P);
T := T + S;

end; {of SIMDAdjacentSum}

Program 2.11 Adjacent sum

-- --

2.10. DATA ACCUMULATION 37

2.13 Data Accumulation

For this operation, PE j has an array A [0 .. M − 1] of size M where M is a power of 2. In addition,
each PE has a value in its I register. After the data accumulation, the M elements of A in each PE
j are such that:

A [i](j) = I ((j + i) mod P), 0 ≤ i < M, 0 ≤ j < P

On an MIMD hypercube, data accumulation is done efficiently by performing M −1 unit
length shifts. On an SIMD hypercube, data accumulation may be done efficiently by adapting the
data circulation algorithm of Program 2.9 (Kumar and Krishnan 1987, Ranka and Sahni 1988b).
This adaptation takes the form of procedure SIMDAccum (Program 2.12).

line procedure SIMDAccum (A, I, M);
{Each PE accumulates in A, the values of the next M PEs including itself}

1 begin

2 Iold := I; Inew := I;

3 SIMDShift (Inew , −M, P);

4 A [0] := I;

5 HighBit := −1;

6 for i := 1 to M−1 do

7 begin

8 l := f (log2M, i);

9 I (j) := Inew(j), (l > HighBit) and (jl = 0);

10 I (j) := Iold(j), (l > HighBit) and (jl = 1);

11 I (j (l)) ← I (j);

12 in (j) := j (l) , (l > HighBit) and (jl = 0);

13 in (j) := j (l) + M, (l > HighBit) and (jl = 1);

14 in (j) := in (j) ⊕ 2l, (l ≤ HighBit);

15 A [(in (j) − j)modP](j) := I (j);

16 HighBit := max{l, HighBit}

17 end;

18 end; {of SIMDAccum}

Program 2.12 Data accumulation

Following line 3, each block (subhypercube) of size M has all the I values needed to do the
data accumulation for that block. These values are in the Inew and Iold registers of the M PEs in the
block. Figure 2.21 (lines 1 and 2) shows the situation for the case P = 16 and M = 8. In this figure,
Ij denotes the value initially in the I register of PE j. The remaining rows give the values of I and l

for each of the seven iterations of the for loop of lines 6-17.

-- --

38 CHAPTER 2. FUNDAMENTAL OPERATIONS

The variable HighBit keeps track of the highest bit encountered in the sequence f (log2M, i)

(the function f was defined in Section 2.6). To establish the correctness of procedure SIMDAccum

we first consider the code fragment of Program 2.13.

From our earlier discussions of f, it follows that l > HighBit exactly when i = 1, 2, 4, 8,.....
The operation of the circulation algorithm (Program 2.9), therefore follows the pattern

T ... transfer along f (log2M, 1)

T ... transfer along f (log2M, 2)

-- --

2.10. DATA ACCUMULATION 39

line

6 for i := 1 to M−1 do

7 begin

8 l := f (logM, i);

9 I (j) := Inew(j), (l > HighBit) and (jl = 0);

10 I (j) := Iold(j), (l > HighBit) and (jl = 1);

11 I (j (l)) ← I (j);

16 HighBit := max{l, HighBit}

17 end;

Program 2.13 Lines 6-11, 16, and 17 of Program 2.12

C ... circulate independently in hypercubes of size 2

T ... transfer along f (log2M, 4)

C ... circulate independently in hypercubes of size 4

T ... transfer along f (log2M, 8)

C ... circulate independently in hypercubes of size 8

...

...

This pattern explains the functioning of Program 2.13. When i is a power of 2 (l>HighBit), a
data transfer along bit l = f (log2M, i) is to be performed. This will be followed by a circulation in
subhypercubes of size i (circulation in a subhypercube of size 1 is null). The data required by
each subhypercube depends on the l’th bit of the PEs in that subhypercube (all PEs in the subhy-
percube have the same l’th bit). If this bit is zero, data is coming from a right adjacent subhyper-
cube with l’th bit equal to 1. So, PEs with this bit being 1 should transmit their Iold values. On the
other hand, subhypercubes with the l’th bit being 1 get data from their left adjacent subhyper-
cube. This has bit l = 0 and the required data is in Inew . Consequently, the code of Program 2.13
causes the correct values of I to circulate through all the PEs.

Next, we need to establish that lines 12 through 15 of Program 2.12 store the I values in the
correct space in A. For this, we first note that when l> HighBit, it follows from lines 2, 3, 9, 10, 12,
and 13 that in (j) is such that I (j) after the transfer of line 11 originated in processor in (j). The
correct place to store this in A is (in (j) − j) mod M as is done in line 15. Consequently, line 15
puts the I’s in the correct position in A.

It is easily seen that the complexity of procedure SIMDAccum is Ο(M + log(P /M)).

-- --

40 CHAPTER 2. FUNDAMENTAL OPERATIONS

2.14 Rank

Associated with processor, i, in each size 2k window of a hypercube is a flag selected (i) which is
true iff this is a selected processor. The objective of ranking is to assign to each selected proces-
sor a rank such that rank (i) is the number of selected processors in the window with index less
than i. Line 0 of Figure 2.22 shows the selected processors in a window of size eight with an *.
An SIMD hypercube is assumed. The ranks to be computed are shown in line 1.

line 0 1 2 3 4 5 6 7
PE

0 * * * * *

1 ∞ 0 1 ∞ 2 ∞ 3 4 R

2 ∞ 0 1 ∞ 0 ∞ 1 2 R

3 2 2 2 2 3 3 3 3 S

4 0 0 0 0 0 0 0 0 R

5 0 1 1 0 1 0 1 1 S

6 0 0 0 0 0 0 0 1 R

7 1 1 1 1 1 1 2 2 S

8 0 0 1 1 0 0 1 2 R

9 2 2 2 2 3 3 3 3 S

10 0 0 1 1 2 2 3 4 R

11 5 5 5 5 5 5 5 5 S

Figure 2.22 Example to compute ranks in an SIMD hypercube

The procedure to compute ranks is very similar to the procedure for prefix sums (Program
2.7). The ranks of the selected processors in a window of size 2k can be computed easily if we
know the following information for the processors in each of the size 2k −1 subwindows that
comprise the size 2k window:

(1) Rank of each selected processor in the 2k −1 subwindow

(2) Total number of selected processors in each 2k −1 subwindow

If a processor is in the left 2k −1 subwindow then its rank in the 2k window is the same as its
rank in the subwindow. If it is in the right subwindow, its rank is its rank in the subwindow plus
the number of selected processors in the left subwindow. Line 2 of Figure 2.22 shows the rank of
each selected processor relative to subwindows of size 4. Line 3 shows the total number of
selected processors in each subwindow.

-- --

2.11. RANK 41

Let R (i) and S (i), respectively, denote the rank of processor i (if it is a selected processor)
and the number of selected processors in the current window that contains processor i. Our stra-
tegy to compute ranks in windows of size 2k is to begin with R and S for windows of size one and
then repeatedly double the window size until we reach a window size of 2k. For windows of size
one we have:

R (i) = 0

S (i) =

�� �
 0
1 otherwise

if i is selected

Lines 4 and 5 of Figure 2.22 give the initial R and S values. Lines 6 and 7 give the values
for windows of size 2; lines 8 and 9 give these for windows of size 4; and lines 10 and 11 give
them for a window size of 8. The ranks for the processors that are not selected may now be set to
∞ to get the configuration of line 1. The procedure to compute ranks is given in Program 2.14.
This procedure is due to Nassimi and Sahni (1981) and its complexity is readily seen to be Ο(k).

procedure rank (k);
{Compute the rank of selected processors in windows of size 2k}
{SIMD hypercube}
begin

{Initialize for size 1 windows}
R (i) := 0;
if selected (i) then S (i) := 1

else S (i) := 0;

{Compute for size 2b +1 windows}
for b := 0 to k −1 do
begin

T (i (b)) ← S (i);
R (i) := R (i) + T (i), (ib = 1);
S (i) := S (i) + T (i);

end;
R (i) := ∞, (not selected (i));

end; {of rank}

Program 2.14 SIMD ranking procedure

-- --

42 CHAPTER 2. FUNDAMENTAL OPERATIONS

2.15 Concentrate

In a data concentration operation we begin with one record, G, in each of the processors selected
for this operation. The selected processors have been ranked and the rank information is in a
field R of the record. Assume the window size is 2k. The objective is to move the ranked records
in each window to the processor whose position in the window equals the record rank. Line 0 of
Figure 2.23 gives an initial configuration for an SIMD eight processor window. The records are
shown as pairs with the second entry in each pair being the rank. We assume that the processors
that are not selected for the concentration operation have a rank of ∞. The result of the concen-
tration is shown in line 1.

line 0 1 2 3 4 5 6 7
PE

0 (-, ∞) (B, 0) (-, ∞) (D, 1) (E, 2) (-, ∞) (G, 3) (H, 4)

1 (B, 0) (D, 1) (E, 2) (G, 3) (H, 4) (-, ∞) (-, ∞) (-, ∞)

2 (B, 0) (-, ∞) (-, ∞) (D, 1) (E, 2) (-, ∞) (H, 4) (G, 3)

3 (B, 0) (D, 1) (-, ∞) (-, ∞) (H, 4) (-, ∞) (E, 2) (G, 3)

Figure 2.23 Example to concentrate in an SIMD hypercube

Data concentration can be done in Ο(k) time by obtaining agreement between the bits of the
destination of a record and its present location in the order 0, 1, 2, . . . , k −1 (Nassimi and Sahni
1981). For our example, we first seek agreement on bit 0. Examining the initial configuration
(line 0) we see that the destination and present location of records B, G, and H disagree on bit 0.
To obtain agreement we exchange these records with the records in neighbor processors along bit
0. This gives the configuration of line 2. Examining the bit 1 of destination and present location
in line 2 we see that records D, E, and H have a disagreement. Exchanging these records with
their neighbors along bit 1 yields line 3. Finally, we examine bit 2 of the destination and present
location of records in line 3 and determine that records E and G need to be exchanged with their
neighbors along bit 2. This results in the desired final configuration of line 1.

Program 2.15 is the concentration procedure that follows the above strategy. This pro-
cedure assumes that the rank information is part of the record and so moves along with the
record. Its correctness is not immediate. We need to establish that whenever an exchange is per-
formed, both records involved in the exchange must have disagreement in their destination and
present location bits. This is done in ?H{conc}.

?H{conc} (Nassimi and Sahni 1981) Procedure concentrate (Program 2.15) is correct.

Proof: The only condition under which the procedure produces incorrect results is if at the start
of some iteration b of the for loop we have:

-- --

2.12. CONCENTRATE 43

procedure concentrate (G, k);
{Concentrate records G in selected processors. 2k is the window size}
{R is the rank field of a record}
begin

for b := 0 to k −1 do
begin

F (i (b)) ← G (i);
G (i) ← F (i), ((G (i) . R ≠ ∞ and (G (i) . R)b ≠ ib))

or (F (i) . R ≠ ∞ and (F (i) . R)b ≠ ib)));
end;

end; {of concentrate}

Program 2.15 Procedure to concentrate records

G (i) . R ≠ ∞, G (i (b)) . R ≠ ∞, (G (i) . R)b = ib , and ((G (i (b)) . R)b ≠ (i (b))b)

for some i. We shall call this the collision condition. Suppose that this condition is true. Let j

and l, respectively, be the PEs in which the records currently in processors i and i (b) originate.
Let RI (j) and RI (l) be the ranks of the records that are initially in these PEs. The collision condi-
tion implies that:

i = (jp −1:b +1 | | RI (j)b :0) = (lp −1:b +1 | | RI (l)b :0)

where | | denotes concatenation, p is the hypercube dimension, and (uw :x | | vy :z) denotes the
integer whose binary representation is bits w through x of u concatenated with bits y through z of
v.

Since j ≠ l and RI (j) ≠ RI (l), the equality

(jp −1:b +1 | | RI (j)b :0) = (lp −1:b +1 | | RI (l)b :0)

implies that | j − l | < 2b +1 and | RI (j) − RI (l) | ≥ 2b +1 . Hence, | j − l | < | RI (j) − RI (l) | . However,
since j and l are in the same 2k block, | j − l | ≥ | RI (j) − RI (l) | . So, the collision condition cannot
hold.

2.16 Distribute

Data distribution is the inverse of data concentration. We begin with records in processors 0,
 . . . , r of a hypercube window of size 2k. Each record has a destination D (i) associated with it.
The destinations in each window are such that D (0) < D (1) < . . . < D (r). The record that is ini-
tially in processor i of the window is to be routed to the D (i)’th processor of the window. Note
that r may vary from window to window. Line 0 of Figure 2.24 gives an initial configuration for
data distribution in an eight processor window of an SIMD hypercube. Each record is
represented as a tuple with the second entry being the destination. Line 1 gives the result of the
distribution.

-- --

44 CHAPTER 2. FUNDAMENTAL OPERATIONS

line 0 1 2 3 4 5 6 7
PE

0 (A, 3) (B, 4) (C, 7) (-, ∞) (-, ∞) (-, ∞) (-, ∞) (-, ∞)

1 (-, ∞) (-, ∞) (-, ∞) (A, 3) (B, 4) (-, ∞) (-, ∞) (C, 7)

2 (A, 3) (-, ∞) (-, ∞) (-, ∞) (-, ∞) (B, 4) (C, 7) (-, ∞)

3 (-, ∞) (-, ∞) (A, 3) (-, ∞) (-, ∞) (B, 4) (C, 7) (-, ∞)

Figure 2.24 Example to distribute in an SIMD hypercube

Since data distribution is the inverse of data concentration it can be carried out by running
the concentration procedure in reverse (Nassimi and Sahni 1981). The result is Program 2.16.
Lines 2, 3, and 1 of Figure 2.24 give the configurations for our example following the iterations b

= 2, 1, and 0, respectively.

procedure distribute (G, k);
{Distribute records G. 2k is the window size}
begin

for b := k −1 downto 0 do
begin

F (i (b)) ← G (i);
G (i) ← F (i), ((G (i) . D ≠ ∞ and (G (i) . D)b ≠ ib))

or (F (i) . D ≠ ∞ and (F (i) . D)b ≠ ib)));
end;

end; {of distribute}

Program 2.16 Procedure to distribute records

2.17 Generalize

The initial configuration for a generalize is similar to that for a data distribution. We begin with
records, G, in processors 0, . . . , r of a hypercube window of size 2k. Each record, G (i), has a
high destination G (i) . H associated with it, 0 ≤ i ≤ r. The high destinations in each window are
such that G (0) . H < G (1) . H < . . . < G (r) . H. Let G (−1) . H = 0. The record that is initially in pro-
cessor i of the window is to be routed to processors G (i −1) . H, G (i −1) . H + 1, . . . , G (i) . H of the
window, 0 ≤ i ≤ r Note that r may vary from window to window. Line 0 of Figure 2.25 gives an
initial configuration for data generalization in an eight processor window of an SIMD hypercube.
Each record is represented as a tuple with the second entry being the high destination. Line 1
gives the result of the generalization.

-- --

2.14. GENERALIZE 45

line 0 1 2 3 4 5 6 7
PE

0 (A, 3) (B, 4) (C, 7) (-, ∞) (-, ∞) (-, ∞) (-, ∞) (-, ∞) G

1 (A, 3) (A, 3) (A, 3) (A, 3) (B, 4) (C, 7) (C, 7) (C, 7) G

2 (-, ∞) (-, ∞) (-, ∞) (-, ∞) (A, 3) (B, 4) (C, 7) (-, ∞) F

3 (-, ∞) (-, ∞) (-, ∞) (-, ∞) (-, ∞) (B, 4) (C, 7) (-, ∞) F

4 (A, 3) (B, 4) (C, 7) (-, ∞) (-, ∞) (B, 4) (C, 7) (-, ∞) G

5 (C, 7) (-, ∞) (A, 3) (B, 4) (C, 7) (-, ∞) (-, ∞) (B, 4) F

6 (C, 7) (-, ∞) (A, 3) (B, 4) (C, 7) (-, ∞) (-, ∞) (-, ∞) F

7 (A, 3) (B, 4) (A, 3) (B, 4) (C, 7) (B, 4) (C, 7) (-, ∞) G

8 (B, 4) (A, 3) (B, 4) (A, 3) (B, 4) (C, 7) (-, ∞) (C, 7) F

Figure 2.25 Example to generalize in an SIMD hypercube

Data generalization is done by repeatedly reducing the window size by half (Nassimi and
Sahni 1981). Each time the window size is halved we ensure that all records needed in the
reduced window are present in that window. Beginning with a window size of eight and line 0 of
Figure 2.25, each processor sends its record to its neighbor processor along bit 2. The neighbor
processor receives the record in F. Line 2 shows the F values following the transfer. Next, some
F’s and G’s are eliminated. This is done by comparing the high destination of a record with the
lowest processor index in the size four window that contains the record. If the compare is true
then the record isn’t needed in the size four window. Applying this elimination criterion to line 0
results in the elimination of no G. However, when the criterion is applied to the F’s of line 2,
F (4) is eliminated and we get the configuration of line 3. At this point each window of size four
has all the records needed in that window. The records are, however, in both F and G. To conso-
lidate the required records into the G’s alone, we use the consolidation criterion:

replace G (i) by F (i) in case F (i) . H < G (i) . H

I.e., of the two records in a PE, the one with smaller high destination survives. We shall establish
the correctness of this consolidation criterion in ?H{gen}. Applying the consolidation criterion
to lines 0 and 3 results in line 4.

Next, records are transferred along bit 1. The F values following this transfer are given in
line 5. Following the application of the elimination criterion we get the F values of line 6. The G

values are unchanged. When the consolidation criterion is applied the G values are as in line 7.
Line 8 shows the F values following a transfer along bit 0. The elimination criterion results in
the elimination of no F or G. The consolidation criterion results in line 1. Procedure generalize

-- --

46 CHAPTER 2. FUNDAMENTAL OPERATIONS

(Program 2.17) implements the generalization strategy just outlined.

procedure generalize (G, k);
{Generalize records G. 2k is the window size}
begin

for b := k −1 downto 0 do
begin

{Transfer to neighboring window of size 2b}
F (i (b)) ← G (i);

{Elimination criterion}
G (i). H := ∞, (G (i). H < i − ib −1:0);
F (i). H := ∞, (F (i). H < i − ib −1:0);

{Consolidation criterion}
G (i) := F (i), (F (i). H < G (i). H);

end;
end; {of generalize}

Program 2.17 Procedure to generalize records

?H{gen} (Nassimi and Sahni 1981) Procedure generalize is correct.

Proof: For the sake of the proof assume that each record also has a field L which gives the index
of the lowest PE to which the record is to go. Initially, L (i) = i if i is the lowest index the 2k block
(i.e., ik −1:0 = 0) and L (i) = H (i −1) + 1 otherwise. For line 0 of Figure 2.25 the L values are (0, 4, 5,
∞, ∞, ∞, ∞, ∞). If H (i) ≠ ∞, then G (i) is to be replicated in PEs L (i) through H (i) of the window.

We define conditions C1
r and C2

r which we shall show are true following iteration b = r, k −1
≤ r ≤ 0, of the for loop of procedure generalize:

C1
r Let i and j be any two distinct PE’s in the same 2r block. If H (i) < L (j) then L (j) − R (i) ≥

(j − i) mod 2r)

C2
r The G’s in each 2r block contain at least one copy of each record needed in that block

The theorem will then follow from the truth of C2
0. The proof is by induction of r. C1

k and
C2

k are easily seen to be true. Assume that C1
r and C2

r are true for r = w + 1. We shall show that C1
w

and C2
w are also true. First consider C1

w . If w = 0, then C1
0 is trivially true. So, assume that w > 0.

Let i and j, i ≠ j be the indices of two PE’s that are in the same 2w block. Let G (i) and G (j),
respectively, be the records in these two PE’s at the end of the iteration b = w. Let l and u, respec-
tively, be their locations at the start of this iteration (and hence at the end of the previous itera-
tion (if any)). If H (j) < L (i) at the end of iteration b = w, then H (l) < L (u) at the start of the itera-
tion. From the truth of C1

w +1 , we get:

L (u) − H (l) ≥ (u − l) mod 2w +1

-- --

2.14. GENERALIZE 47

Using H (l) = H (i) and L (u) = L (j) in this inequality, we get:

L (j) − H (i) ≥ (u − l) mod 2w +1

Since, l ∈ {i, i + 2w , i − 2w} and u ∈ {j, j + 2w , j − 2w},

(u − l) mod 2w +1 ≥ (j − i) mod 2w)

Hence C1
w is true following the iteration b = w.

Next consider C2
w . From C2

w +1 and the transfer to neighbor step, it follows that after the
transfer to neighbor step is complete the G’s and F’s in each 2w window collectively contain all
the records needed in the 2w window. Since the elimination criterion only eliminates records that
are not needed in the window, we need be concerned only about the consolidation step. Further-
more, we need only concern ourselves with processors i for which H . F (i) ≠ ∞ and H . G (i) ≠ ∞.
If H . G (i) < H . F (i), then from C1

w +1 and the fact that G (i) and F (i) were 2w apart before the
transfer we get:

L . F (i) − H . G (i) ≥ 2w mod 2w +1 = 2w

This and the observation that H . G (i) ≥ i − iw −1:0 implies that L . F (i) ≥ i − iw −1:0 + 2w . Hence,
L . F (i) is greater than any PE index in the 2w window that contains i. So, F (i) is not needed in the
2w block and may be eliminated. A similar argument shows that when H . F (i) < H . G (i), G (i) is
not needed. When H . F (i) = H . G (i), F (i) and G (i) are the same record and it doesn’t matter
which is eliminated. So, following the consolidation step C2

w is true.

2.18 Sorting

A bitonic sequence is a nonincreasing sequence of numbers followed by a nondecreasing
sequence. Either (or both) of these may be empty. The sequence has the form x 1 ≥ x 2 ≥ . . . ≥ xk

≤ xk +1 ≤ . . . ≤ xn, for some k, 1 ≤ k ≤ n. The sequences 10, 9, 9, 4, 5, 7, 9; 2, 3, 4, 5, 8; 7, 6, 4, 3, 1;
and 11, 2, 5, 6, 8, 9 are example bitonic sequences.

A bitonic sort is a process that sorts a bitonic sequence into either nonincreasing or nonde-
creasing order. A bitonic sort can be used to merge together two sorted sequences v 1 ≤ v 2 ≤ . . .

≤ vl and w1 ≤ w2 ≤ . . . ≤ wm by first concatenating them to obtain the bitonic sequence vl ≥ vl −1 ≥
 . . . ≥ v 1 ? w1 ≤ w2 ≤ . . . ≤ wm = x 1 ≥ x 2 ≥ . . . ≥ xk ≤ xk +1 ≤ . . . ≤ xn where n = l + m. The result-
ing bitonic sequence is then sorted using a bitonic sort to obtain the desired merged sequence.
So, for example, if we wish to merge the sequences (2, 8, 20, 24) and (1, 9, 10, 11, 12, 13, 30) we
first create the bitonic sequence (24, 20, 8, 2, 1, 9, 10, 11, 12, 13, 30).

Batcher’s bitonic sort (Knuth 1973) is ideally suited for implementation on a hypercube
computer. Batcher’s algorithm to sort the bitonic sequence x 1, . . . , xn into nondecreasing order
is given in Program 2.18.

?E{bitonic} Consider the bitonic sequence (24, 20, 8, 2, 1, 9, 10, 11, 12, 13, 30). Suppose we
wish to sort this into nondecreasing order. The odd sequence is (24, 8, 1, 10, 12, 30) and the

-- --

48 CHAPTER 2. FUNDAMENTAL OPERATIONS

Step 1: [Sort odd subsequence] If n > 2 then recursively sort the odd bitonic subsequence x 1, x 3 ,
x 5, . . . into nondecreasing order

Step 2: [Sort even subsequence] If n > 3 then recursively sort the even bitonic subsequence x 2 ,
x 4, x 6 , . . . into nondecreasing order

Step 3: [Compare/exchange] Compare the pairs of elements xi and xi+1 for i odd and exchange
them in case xi > xi +1

Program 2.18 Bitonic sort into nondecreasing order

even sequence is (20, 2, 9, 11, 13). Sorting these, we obtain the sequences (1, 8, 10, 12, 24, 30)
and (2, 9, 11, 13, 20). Putting the sorted odd and even parts together, we obtain the sequence (1,
2, 8, 9, 10, 11, 12, 13, 24, 20, 30). After performing the � n /2 � compare/exchanges of step 3, we
obtain the sorted sequence (1, 2, 8, 9, 10, 11, 12, 13, 20, 24, 30).

The 0/1 principle may be used to establish the correctness of Batcher’s method.

?H{bitonic} [0/1 Principle] (Knuth 1973) If a sorting algorithm that performs only element com-
parisons and exchanges sorts all sequences of zeroes and ones then it sorts all sequences of arbi-
trary numbers.

Proof: We shall show that if a compare exchange algorithm fails to sort a single sequence of
arbitrary numbers then it must fail to sort at least one sequence of zeroes and ones. Hence if all
0/1 sequences are sorted then all arbitrary sequences are also sorted.

Let f be any monotonic function such that f (x) ≤ f (y) whenever x ≤ y. It is easy to see that
if a compare/exchange algorithm transforms (x 1 , . . . , xn) into (y 1 , . . . , yn), then it transforms
(f (x 1), . . . , f (xn)) into (f (y 1), . . . , f (yn)).

Suppose that the algorithm transforms (x 1 , . . . , xn) into (y 1 , . . . , yn) and yi > yi +1 for some i

(i.e., the input sequence isn’t sorted). Define the monotonic function f such that f (xj) = 0 for xj <
yi and f (x j) = 1 for x j ≥ yi. The algorithm transforms the 0/1 sequence (f (x 1), . . . , f (xn)) into the
sequence (f (y 1), . . . , f (yn)) which is not sorted.

As a result of ?H{bitonic} the correctness of Program 2.18 can be established by showing
that this algorithm sorts all 0/1 bitonic sequences.

?H{bitonic2} (Knuth 1973) Program 2.18 sorts all 0/1 bitonic sequences.

Proof: We shall use induction on the length n of the 0/1 bitonic sequence. The correctness of
Program 2.18 is easily verified for n ≤ 2. Assume its correctness for n ≤ m where m is an arbitrary
natural number greater than 1. Consider any 0/1 bitonic sequence x 1, . . . , xn with n = m + 1. Its
odd and even subsequences are bitonic sequences of length less than m +1. From the induction
hypothesis Program 2.18 correctly sorts these. The initial 0/1 bitonic sequence is of the form
1a0b1c where q r denotes a sequence of r q’s and a + b + c = n = m + 1. Hence if the odd

-- --

2.15. SORTING 49

subsequence contains d zeroes and if the even subsequence contains e zeroes, then | d − e | ≤ 1.
The sorted odd subsequence has the form 0d1 � n /2 � − d and the sorted even subsequence has the
form 0e1

�
n /2 � − e. If d = e or d = e + 1 then the combination of the sorted odd and even subse-

quences is also sorted and no exchanges take place in step 3. If d = e − 1, then the combination of
the sorted odd and even subsequences has a 0 in position 2e and a 1 in position 2e −1. The ele-
ments in positions 1 through 2e − 2 are all zeroes and those in positions e + 1 through n are all
ones. The elements in positions 2e − 1 and 2e are compared in step 3 and exchanged. Hence fol-
lowing step 3 we have a sorted sequence.

When n is a power of 2 the recursion of Program 2.18 can be unfolded to obtain the
compare/exchange algorithm of Program 2.19. In each iteration of the while loop each sequence
element is paired with exactly one other sequence element that is a distance d from it. The pairs
are formed left to right. To obtain a nondecreasing sequence each compare exchange causes the
smaller element of the pair to move to the left position. If a nonincreasing sequence is desired
the smaller element is moved to the right. Figure 2.26 shows an eight element bitonic merge that
results in a nondecreasing sequence and Figure 2.27 gives an example that results in a nonin-
creasing sequence. The examples assume the elements to be sorted are stored in processors of a
hypercube with one element per processor. As can be seen the elements that form each of the
pairs for the compare/exchange operation are in processors that are hypercube neighbors. Hence
each iteration of the while loop of Program 2.19 takes Ο(1) time on a hypercube. The total time
to sort an n element bitonic sequence is therefore Ο(logn).

procedure BitonicSort (n);
{Sort the bitonic sequence x 1, . . . , xn}
{n is a power of 2}
begin

d = n /2;
while d > 0 do
begin

compare/exchange elements d apart
d = d /2;

end;
end; {of BitonicSort}

Program 2.19 Iterative bitonic sort for n a power of 2

To sort n elements using bitonic sort, we begin with sorted sequences of size one. Adjacent
pairs of these form bitonic sequences that are sorted (in parallel) to obtain sorted sequences of
size two. The sort is done such that the size two sequences are alternately nonincreasing and
nondecreasing sequences (i.e, the first, third, fifth, ..., sequences are nonincreasing and the
remainder are nondecreasing). Consequently every pair of adjacent size two sequences forms a
bitonic sequence of size four which can be sorted using bitonic sort. The size four sequences are
also sorted alternately into nonincreasing and nondecreasing order. Continuing in this way we
can obtain a sorted sequence of size n after log2n bitonic sort steps. Note that if the sorted
sequence is to be in nondecreasing order, then the last bitonic sort step should sort the first and

-- --

50 CHAPTER 2. FUNDAMENTAL OPERATIONS

line 0 1 2 3 4 5 6 7 d

PE

0 7 6 4 0 1 2 3 5 4

1 1 2 3 0 7 6 4 5 2

2 1 0 3 2 4 5 7 6 1

3 0 1 2 3 4 5 6 7

Figure 2.26 Power of 2 bitonic sort (nondecreasing order)

line 0 1 2 3 4 5 6 7 d

PE

0 7 6 4 0 1 2 3 5 4

1 7 6 3 5 1 2 3 0 2

2 7 6 4 5 3 2 1 0 1

3 7 6 5 4 3 2 1 0

Figure 2.27 Power of 2 bitonic sort (nonincreasing order)

only resulting sequence into this order. The total time for the sort is Ο(log2n).

?E{bitonic2} Suppose we wish to sort the sequence

c n m f h a p d g j l k b e i o

into nondecreasing order and that a < b < . . . < o < p. The pairs (c n), (m f), (h a), (p d), (g j), (l
k), (b e), and (i o) are bitonic sequences that are sorted using bitonic sort to obtain the sequence:

-- --

2.15. SORTING 51

n c f m h a d p j g k l e b i o

Note that the odd pairs were sorted into nonincreasing order while the even ones were sorted into
nondecreasing order. Next we consider adjacent sequences of length four. These are (n c f m),
(h a d p), (j g k l), and (e b i o). Since each is a bitonic sequence it may be sorted using bitonic
sort. The result is:

n m f c a d h p l k j g b e i o

Once again the odd sequences are sorted into nonincreasing order while the even ones are sorted
into nondecreasing order. We now have two bitonic sequences of length eight: (n m f c a d h p)
and (l k j g b e i o). Sorting these gives us the sequence:

p n m h f d c a b e g i j k l o

Sorting this into nondecreasing order results in the sequence:

a b c d e f g h i j k l m n o p

2.19 Random Access Read

In a random access read (RAR) some of the processors of the hypercube wish to read data from
other processors of the hypercube. Let A (i) be the PE from which processor i wishes to get data.
The data to be obtained is D (A (i)). In case PE i does not wish to read data from any other PE,
then A (i) = ∞. Line 0 of Figure 2.28 gives the A values for an example RAR in an eight processor
hypercube. Note that in an RAR several processors may read from the same PE. An RAR can be
done in Ο(log2n) time in an n processor hypercube using the algorithm of Program 2.20 (Nassimi
and Sahni 1981).

Step 1: Each processor a creates a triple (A (a), a, flag) where flag is a Boolean entity that is ini-
tially true.

Step 2: [Sort] Sort the triples into nondecreasing order of the read address A (a). Triples with
the same read address are in nondecreasing order of the PE index a. Furthermore, dur-
ing the sort the flag entry of a triple is set to false in case there is a triple to its right
with the same read address.

Step 3: [Rank] Processors with triples whose first component ≠ ∞ and whose third component
(i.e., flag) is true are ranked.

Step 4: Each processor b that has a triple (A (a), a, true) with A (a) ≠ ∞ creates a triple of the
form (R (b), A (a), b) where R (b) is the rank computed in the preceding step.

Step 5: [Concentrate] The triples just created are concentrated.

-- --

52 CHAPTER 2. FUNDAMENTAL OPERATIONS

Step 6: Each processor c that has a concentrated triple (R (b), A (a), b) creates a tuple of the
form (c, A (a)). Note that since c = R (b) this tuple is just the first two components of the
triple.

Step 7: [Distribute] The tuples are distributed using the second component as the destination
address.

Step 8: Each processor A (a) that receives a tuple (c, A (a)) creates the tuple (c, D (A (a))).

Step 9: [Concentrate] The tuples created in the preceding step are concentrated using the first
component as the rank.

-- --

2.16. RANDOM ACCESS READ 53

Step 10: Each processor c that received a tuple (c, D (A (a))) in the last step also has a triple of
the form (R (b), A (a), b) that it received in Step 5 (notice that c = R (b)). Using this triple
and the tuple received in Step 9 it creates the tuple (b, D (A (a))).

Step 11: [Generalize] The tuples (b, D (A (a))) are generalized using the first component as the
high destination.

Step 12: Each processor that received a tuple (b, D (A (a))) in Step 11 also has a triple (A (a), a,
flag) that it obtained as a result of the sort of Step 2. Using information from the tuple
and the triple it creates a new tuple (a, D (A (a))). Processors that did not receive a tuple
use the triple they received in Step 2 and form the tuple (a, -).

Step 13: [Sort] The newly created tuples of Step 12 are sorted by their first component.

Program 2.20 Algorithm for a random access read

Consider the example of Figure 2.28. In Step 1 each processor creates a triple with the first
component being the index of the processor from which it wants to read data; the second com-
ponent is its own index; and the third component is a flag that is initially true (t) for all triples.
Then, in Step 2 the triples are sorted on the first component. Triples that have the same first com-
ponent are in increasing order of their second component. Within each sequence of triples that
have the same first component only the last one has a true flag. The flag for the remaining triples
is false. The first components of the triples with a true flag give all the distinct processors from
which data is to be read.

Processors 0, 2, 3, and 5 are ranked in Step 3. Since the highest rank is three, data is to read
from only four distinct processors. In Step 4 the ranked processors create triples of the form
(R (b), A (a), b). The triples are then concentrated. Processors 0 through 3 receive the concen-
trated triples and form tuples of the form (c, A (a)). Because of the sort of Step 2 the second com-
ponents of these tuples are in ascending order. Hence, they can be routed to the processors given
by the second component using a data distribution as in Step 7. The destination processors of
these tuples are the distinct processors whose data is to be read. These destination processors
create, in Step 8, tuples of the form (c, D (A (a))) where c is the index of the processor that ori-
ginated the tuple it received. These tuples are concentrated in Step 9 using the first component as
the rank.

In Step 10 the receiving processors (i.e., 0 through 3) use the triples received in Step 5 and
the tuples received in Step 9 to create tuples of the form (b, D (A (a))). The first component is the
index of the processor that originated the triple received in Step 5. Since the triples received in
Step 5 are the result of a concentration, the first component of the newly formed tuples are in
ascending order. The tuples are therefore ready for generalization using the first component as
the high index. This is done in Step 11. After this generalization we have the right number of
copies of each data. For example, two processors (4 and 5) wanted to read from processor 7 and
we now have two copies of D (7). Comparing the triples of Step 2 and the tuples of Step 11, we
see that the second component of the triples tells us where the data in the tuples is to be routed to.
In Step 12 we create tuples that contain the destination processor and the data. Since the destina-
tion addresses are not in ascending order the tuples cannot be routed to their destination proces-
sors using a distribute. Rather, they must be sorted by destination.

-- --

54 CHAPTER 2. FUNDAMENTAL OPERATIONS

2.20 Random Access Write

A random access write (RAW) is like a random access read except that processors wish to write
to other processors rather than to read from them. A random access write uses many of the basic
steps used by a random access read. It is, however, quite a bit simpler. Line 0 of Figure 2.29
gives the index A (i) of the processor to which processor i wants to write its data D (i). A (i) = ∞ in
case processor i is not to write to another processor. Observe that it is possible for several pro-
cessors to have the same write address A. When this happens, we say that the RAW has colli-
sions. It is possible to formulate several strategies to handle collisions. Three of these are:

-- --

2.17. RANDOM ACCESS WRITE 55

(1) [Arbitrary RAW] Of all the processors that attempt to write to the same processor exactly
one succeeds. Any of these writing processors may succeed.

(2) [Highest/lowest RAW] Of all the processors that attempt to write to the same processor the
one with the highest (lowest) index succeeds.

(3) [Combining RAW] All the porcessors succeed in getting their data to the target processors.

Consider the example of line 0 of Figure 2.29. In an arbitrary RAW any one of D (0), D (2),
and D (7) will get to processor 3; one of D (1) and D (5) will get to processor 0; and D (3) and D (4)
will get to processors 4 and 6, respectively. In a highest RAW D (7), D (5), D (3), and D (4),
respectively, get to processors 3, 0, 4, and 6. In a lowest RAW D (0), D (1), D (3) and D (4) get to
processors 3, 0, 4, and 6, respectively. In a combining RAW D (0), D (2), and D (7) all get to pro-
cessor 3; both D (1) and D (5) get to processor 0; and D (3) and D (4) get to processors 4 and 6,
respectively.

The steps involved in an arbitrary RAW are given in Program 2.21 (Nassimi and Sahni
1981). Let us go through these steps on the example of Figure 2.29. Each processor first creates
triples whose first component is the index, A (a), of the processor to which it is to write. Its
second component is the data, D (a), to be written and the third component is true. The triples are
then sorted on the first component. During this sort the flag entry of a triple is changed to false in
case there is a triple with the same write address to its right. Only the triples with a true flag are
invloved in the remainder of the algorithm. Notice that for each distinct write address there will
be exactly one triple with a true flag. The processors that have a triple with a true flag are ranked
(Step 3) and these processors create new triples whose first and second components are the same
as in the old triples but whose third component is the rank. The triples are then concentrated
using this rank information. Since the triples are in ascending order of the write addresses (first
component) they may be routed to these processors using a data distribute operation. Note that
for Step 6 the third component (i.e., rank) of each triple may be dropped before the distribute
begins.

The complexity of a random access write is determined by the sort step which takes
Ο(log2n) time where n is the number of processors.

A highest (lowest) RAW can be done by modifying Program 2.21 slightly. Step 1 creates
4-tuples instead of triples. The fourth component is the index of the originating processor. In the
sort step (Step 2) ties are broken by the fourth component in such a way that the right most 4-
tuple in any sequence with the same write address is the 4-tuple we want to succeed (i.e., highest
or lowest fourth component in the sequence). Following this the fourth component may be
dropped from each 4-tuple. The remaining steps are unchanged.

The steps for a combining RAW are also similar to those in Program 2.21. When the rank-
ing of Step 3 is done we use a version of procedure rank (Program 2.14) that does not contain the
last line (R (i) := ∞, (not selected (i))). As a result processor 0 (Figure 2.29) has a rank of 0 and
processors 2 and 3 have a rank of 1. During the concentration step (Step 5) more than one triple
will try to get to the same processor. Procedure concentrate (Program 2.15) is modified to com-
bine together triples that have the same rank. These modifications do not change the asymptotic
complexity of the RAW unless the combining operation increases the triple size (as in a con-
catenate). In case d data values are to reach the same destination, the complexity is

-- --

56 CHAPTER 2. FUNDAMENTAL OPERATIONS

Step 1: Each processor a creates a triple (A (a), D (a), flag) where flag is a Boolean entity that is
initially true.

Step 2: [Sort] Sort the triples into nondecreasing order of the write address A (a). Ties are broken
arbitrarily and during the sort the flag entry of a triple is set to false in case there is a
triple to its right with the same write address.

Step 3: [Rank] Processors with triples whose first component is not ∞ and whose third
component (i.e., flag) is true are ranked.

Step 4: Each processor b that has a triple (A (a), D (a), true) with A (a) ≠ ∞ creates a triple of the
form (A (a), D (a), R (b)) where R (b) is the rank computed in the preceding step.

Step 5: [Concentrate] The triples just created are concentrated.

Step 6: [Distribute] The concentrated triples are distributed using the first component as the
destination address.

Program 2.21 Algorithm for an arbitrary RAW

Ο(log2n + dlogn).

2.21 BPC Permutations

The sorting problem of Section 2.15 requires us to rearrange the records in nondescending order
of key value. The desired rearrangement is simply a permutation of the initial order and as we
saw in Section 2.15, this permutation can be performed on a hypercube in Ο(log2n) time where n

is both the number of records and the number of processors in the hypercube. In several situa-
tions where the records are to be permuted, the desired permutation can be specified by providing
an explicit relation between a records initial and final positions. One class of permutations
obtained by such an explicit specification is known as the bit-permute-complement (BPC) class
(Nassimi and Sahni 1982). In this class, the final or destination PE of the record initially in PE i

is obtained by permuting and possibly complementing some of the bits in the binary representa-
tion of i.

Every BPC permutation on a hypercube of dimension k (i.e., n = 2k) can be specified by a
permutation vector B = [Bk −1 , Bk −2, . . . , B0] such that [| Bk −1 | , | Bk −2 | , . . . , | B0 |] is a permutation
of [k −1, k −2, . . . , 0]. In the specification of B, we distinguish between −0 and 0. Thus, −0 is con-
sidered to be less than 0. Let d = dk −1dk −2 . . . d0 be the destination PE of the data initially in PE i =
ik −1ik −2 . . . i0. i j determines bit | Bj | of d as below:

d | Bj | =

�
� �

i
_

j if Bj < 0

i j if Bj ≥ 0

where i
_

j is the complement of i j.

As an example, consider the case k = 3 and B = [0, 2, 1]. The binary representation of the
destination d of the data in PE i = i2i 1i0 is i1 i0i 2. The mapping from initial to destination PEs is
as given in Figure 2.30. Figure 2.31 gives the mapping for the case B = [1, 0

_
, 2]. In this case d =

-- --

2.18. BPC PERMUTATIONS 57

i0 i2i
_

1.

i i2 i1i 0 d2d1d0 d

0 000 000 0
1 001 010 2
2 010 100 4
3 011 110 6
4 100 001 1
5 101 011 3
6 110 101 5
7 111 111 7

Figure 2.30 B = [0, 2, 1]

i i2 i1i 0 d2d1d0 d

0 000 001 1
1 001 101 5
2 010 000 0
3 011 100 4
4 100 011 3
5 101 111 7
6 110 010 2
7 111 110 6

Figure 2.31 B = [1, 0
_
, 2]

Some of the commonly performed BPC permutations and their corresponding B vectors are
given in Figure 2.32. Notice that the example B = [0, 2, 1] considered above is an example of a
perfect shuffle permutation.

Every BPC permutation can be performed Ο(log2n) time by having each PE compute the
destination PE for its data and then sorting the data using the destination PE as key. It is possible
to perform BPC permutations in Ο(logn) time by an algorithm tailored to these permutations.

The strategy of the algorithm of Nassimi and Sahni (1982) is to route data along the hyper-
cube dimensions such that following the route along dimension b, the present location of data and
its final destination agree on bit b, 0 ≤ b < k. The order in which the bits/dimensions for routing
are selected is based on the cycle structure of the permutation B. The permutation B is examined
right to left (i.e., in the order B0, B1 , . . . , Bk −1). If Bb = b, then the present and final location of the
data agree on bit b and no routing on this bit is to be performed. If Bb = b

_
, then the final and

present location of all data differ on bit b. To get agreement, it is necessary to route all data along

-- --

58 CHAPTER 2. FUNDAMENTAL OPERATIONS

Permutation B

Matrix Transpose [k /2 − 1, . . . , 0, k − 1, . . . , k /2]
Bit Reversal [0, 1, 2, . . . , k − 1]
Vector Reversal [−(k − 1), −(k − 2), . . . , −0]
Perfect Shuffle [0, k − 1, k − 2, . . . , 1]
Unshuffle [k − 2, k − 3, . . . , 0, k − 1]
Shuffled Row Major [k − 1, k /2 − 1, k − 2, k /2 − 2, . . . , k /2, 0]
Bit Shuffle [k − 1, k − 3, . . . , 1, k − 2, k − 4, . . . , 0]

Figure 2.32 Common BPC permutations (Nassimi and Sahni 1982)

bit b. This results in data in every PE i with ib = 0 being moved to the corresponding PE with bit
b = 1 and vice versa. Agreement in bit b of the present and final locations is obtained and at the
same time agreement in the other bits is unaffected. In case | Bb | ≠ b, a nontrivial cycle (i.e., one
of length greater than 1) begins at bit b. The next position on this cycle is c = | Bb | . Let d =
| Bc | . Note that d ≠ c. If d = b, then c is the end of the cycle. If d ≠ b, then d is the next position
in the cycle. Following in this way, a complete cycle of B can be identified.

Consider the perfect shuffle permutation given by B = [B2 , B1 , B0] = [0, 2, 1] (Figure 2.30).
This consists of the single cycle b = 0, c = 1, and d = 2. We shall refer to this as the cycle 0, 1, 2.
The permutation B = [4, −6, 0, −7, 2, −5, 1, 3] consists of the cycles 0, 3, 2, 5; 1; 4, 7; and 6. The
cycles 1 and 6 are of length 1 and are called trivial cycles. The remaining cycles are nontrivial
cycles. The BPC permutation algorithm handles these cycles in the order listed. When the cycle
0, 3, 2, 5 is handled, we obtain agreement between the present and final locations of data on their
0, 3, 2, and 5 bits. Next, the trivial cycle 1 is handled. This requires no routing as the present and
final locations of data already agree on bit 1. Handling of the cycle 4, 7 requires us to obtain
agreement on bits 4 and 7 of the present and final locations of all data. Finally, the cycle 6 is
handled. Since B6 = −6, the present and final locations of all data disagree on this bit. Agreement
is obtained by routing all data along dimension 6 of the hypercube.

To handle a nontrivial cycle, assume that the data to be rearranged is in R (0 : n − 1). We
shall make use of the register S (i) in PE i, 0 ≤ i < n to hold data that is to be routed along the next
routing dimension. When considering the cycle c 0, c 1, c 2, . . . , we shall first route along dimen-
sion c 1 to obtain agreement on bit c 1; the next route is along dimension c 2 and results in agree-
ment on bit c 2; . . . ; the final route is along dimension c 0 and obtains agreement on bit c 0. For the
cycle 0, 1, 2, the routing sequence is dimension 1 first, then dimension 2, and finally dimension 0.
The routing sequence for the cycle 0, 3, 2, 5 is 3, 2, 5, 0. The case of the cycle 0, 1, 2 is worked
out in Figure 2.33.

In Figure 2.33, the column labeled PE gives the binary representation of the eight PE
indices. OR (i) and OS (i), respectively give the index of the originating PE of the data currently
in R (i) and S (i). The symbol ∗ is used when R (i) or S (i) contains no data. Column 1 gives the
initial data configuration. The first route will be along dimension one of the hypercube and is to

-- --

2.18. BPC PERMUTATIONS 59

000
0
∗

0
∗

0
2

0
2

0
4

0
4

0
∗

0
−

OR

OS

001
1
∗

∗
1

∗
*

∗
*

∗
*

∗
*

∗
4

4
−

OR

OS

010
2
∗

∗
2

∗
*

∗
*

∗
*

∗
*

∗
1

1
−

OR

OS

011
3
∗

3
∗

3
1

1
3

1
5

5
1

5
∗

5
−

OR

OS

100
4
∗

4
∗

4
6

6
4

6
2

2
6

2
∗

2
−

OR

OS

101
5
∗

∗
5

∗
*

∗
*

∗
*

∗
*

∗
6

6
−

OR

OS

110
6
∗

∗
6

∗
*

∗
*

∗
*

∗
*

∗
3

3
−

OR

OS

111
7
∗

7
∗

7
5

7
5

7
3

7
3

7
∗

7
−

OR

OS

PE 1 2 3 4 5 6 7 8

1 2 0

Route dimension

Column

Figure 2.33 Perfect shuffle

result in agreement on bit one. From Figure 2.30, we see that the present and final locations of
R (0), R (3), R (4), and R (7) already agree on bit one. So, these are not to be routed along dimen-
sion one. Bit one of the present location of the remaining records does not agree with bit one of
their destinations. These records are to be routed along dimension one. For this, they are first
moved to the corresponding S registers. This movement is actually done by exchanging the R and
S values in the corresponding PEs. The exchange pairs are identified by double headed arrows in
Figure 2.33. The result is column 2 of Figure 2.30. Routing S along dimension one results in
exchanging the S pairs identified by the double headed arrows of column 2. Column 3 gives the
configuration following this route. Now the current and final locations of all records agree on bit
one. Observe that half the records are in R and the remainder are in S.

-- --

60 CHAPTER 2. FUNDAMENTAL OPERATIONS

The next routing dimension is dimension two. Since bit one of an originating index is to
become bit two of the destination index, we need to route R (i) if (OR (i))1 ≠ (OR (i))2 and S (i) is to
be routed if (OS (i))1 ≠ (OS (i))2. Since there has been no routing on bit two thus far, (OR (i))2 and
(OS (i))2 both equal i 2. Further, since S (i) was just routed on bit one and R (i) has not been routed
on bit one, (OS (i))1 = i

_
1 and (OR (i))1 = i 1. Consequently, S (i) is to be routed if i1 = i2 and R (i) is

to be routed otherwise. To prepare for this routing, the data to be routed is moved to S in case it
isn’t already there. This requires us to exchange R (i) and S (i) in all PEs with i 1 ≠ i2 . That is, PEs
2, 3, 4, and 5 exchange their R and S values. These exchanges are identified by the double
headed arrows of column 3. The result is shown in column four. Next, all PEs route their S

values along dimension two. Column four identifies the processor pairs involved in the
exchange. Only pairs with useful S data are marked. The configuration following the dimension
two routing is shown in column 5.

The last route is along dimension zero. Column 5 shows the processors that need to
exchange their R and S values so that data that is to be routed along dimension zero is in the S

registers of all PEs. Column 6 shows the result of the exchange and column seven shows the
configuration following the routing along dimension zero. Comparing with Figure 2.30, we see
that all records have been successfully routed to their correct destination PEs. All that remains is
for the four PEs that have the records in their S registers to move them into their R registers. The
final configuration is shown in column eight.

The preceding discussion may be generalized to arrive at the algorithm of Program 2.22.
The symbol :=: denotes an exchange and a :=: b is equivalent to the statements t := a; a := b;
b := a. To establish the correctness of this procedure, we need to show the following:

(1) Lines 10 and 11 correctly set the S registers to contain the data that is to be routed along
dimension q.

(2) Lines 18 and 19 correctly move records back to the R registers.

This is done in the next two theorems.

?H{BPC1} Let DR (i) and DS (i), respectively, denote the destination PE of the data currently in
R (i) and S (i). In case OR (i) (OS (i)) equals ∗, let DR (i) (DS (i)) equal ∗. Assume that all Boolean
expressions involving ∗ are true. So, ∗ j = i j and ∗j = i

_
j are both true. Following line 11 of Pro-

gram 2.22, we have (DR (i))q = iq and (DS (i))q ≠ iq, 0 ≤ i < n. So, exactly the S register data is to
routed along dimension q in order to get bit q of the current and destination locations to be the
same.

Proof: At the start of each nontrivial cycle (line 6), all data is in the R registers and OS (i) = DS (i)
= ∗, 0 ≤ i < n. Furthermore, the expression

E (i,l) = [((OR (i))l = il) and ((OS (i))l = i
_
l)]

is true for all i, 0 ≤ i < n and all bit positions l on the new cycle as no routing has as yet been done
along any of the corresponding dimensions and OS (i) = ∗. So, following line 6 E (i, j) is true for
all i. Assume that E (i, j) is true at line 8. If Bj ≥ 0, then for PEs i with ij ≠ iq, we have:

-- --

2.18. BPC PERMUTATIONS 61

line procedure BPC (R, B, k);
{Permute R according to the BPC permutation B}
{k is the hypercube dimension}

{Find the cycles of B}
1 for b := 0 to k − 1 do
2 if Bb = − b then R (i (b)) ← R (i)
3 else if | Bb | ≠ b then
4 begin
5 {Follow a nontrivial cycle of B}
6 j := b; s := Bb;
7 repeat
8 q := | Bj | ; {Next route is along dimension q}
9 {Put element to be routed in S}

10 if Bj ≥ 0 then S (i) :=: R (i), (i j ≠ iq)

11 else S (i) :=: R (i), (i j = iq);
12 S (i (q)) ← S (i);
13 Bj := j;
14 j := q; {Next position in current cycle of B}
15 until j = b; {b is start of cycle}

16 {Move everything back to R}
17 q := | s | ; {Initial Bb value}
18 if s ≥ 0 then R (i) := S (i), (ib ≠ iq)

19 else R (i) := S (i), (ib = ik);
20 end;
21 end; {of BPC}

Program 2.22 BPC permutations

(DR (i))q = (OR (i))j = i j = i
_
q

and

(DS (i))q = (OS (i))j = i
_

j = iq

For PEs i with ij = iq, we have:

(DR (i))q = (OR (i))j = i j = iq

and

(DS (i))q = (OS (i))j = i
_

j = i
_
q

So, in both cases, following lines 10 and 11, we have:

-- --

62 CHAPTER 2. FUNDAMENTAL OPERATIONS

(DR (i))q) = iq and (DS (i))q ≠ iq

A similar proof shows this for the case Bj < 0. To complete the proof, we need to show that
E (i, j) is true following line 14 and so true at the start of the next iteration of the repeat loop. For
this, we note that (OR (i))j = i j following line 14 as R (i) was not routed along dimension j = q in
this iteration of the repeat loop and no routes along this dimension were performed previously.
Further, (OS (i))j = i

_
j as the only route ever performed along dimension j = q exchanges the S

register data.

?H{BPC2} Lines 18 and 19 correctly move records back to the R registers.

Proof: The first time lines 10 and 11 are executed for any nontrivial cycle, half of the PEs move
their data to their S registers. Let us refer to these PEs as the data transfer PEs. The transfer PEs
have an index i such that ib ≠ i | s | if s = Bb ≥ 0 and ib = i | s | otherwise. Following the first execu-
tion of line 12, these PEs lose their data and all n of the initial data records are in the remaining
n /2 PEs. The transfer PEs and the remaining PEs define two sets of PEs. In the case of our
example of Figure 2.30, the transfer set is {001, 010, 101, 110} and the remaining set is {000,
011, 100, 111}. In one set all PEs have bits b and | s | equal while in the other set these bits are
different for all PEs. In the iterations of the repeat loop that exclude the first and last, data can-
not transfer from one PE set to the other as none of these iterations involves a route along dimen-
sions b or | s | and a route along any other dimension cannot affect the relationship between ib

and i | s | . In the last iteration of the repeat loop, data is routed along dimension b. As a result,
data moves from one PE set to the other. Consequently, when line 17 is reached the transfer PEs
have their data in S while the remaining PEs have it in R. Lines 18 and 19 move data from S to R

only in the transfer PEs.

Before concluding this section, we show that procedure BPC (Program 2.22) is optimal in
the sense that for every BPC permutation B it performs the fewest possible number of routes.
Define β(B) as below:

β(B) = | {b | Bb ≠ b} |

It is easy to see that the number of routes performed by procedure BPC is β(B). The following
theorem shows that β(B) is a lower bound on the number of routes needed to perform B on a
hypercube.

?H{BPC3} (Nassimi and Sahni 1982) β(B) is a lower bound on the number of routes needed to
perform the BPC permutation B on a hypercube.

Proof: For every b such that Bb ≠ b, there is at least one i, 0 ≤ i < n for which (OR (i))b ≠ (DR (i))b .
Hence B cannot be performed on a hypercube without a route along dimension b. So, β(B) is a
lower bound on the number of routes needed.

-- --

2.19. SUMMARY 63

2.22 Summary

We have studied many hypercube algorithms in this Chapter. In this section, we provide a sum-
mary of these together with where these are used in this book. In the following, M and W are
powers of 2. They represent the size (i.e., the number of processors) in a subhypercube. Unless
otherwise stated, the size of the full hypercube is denoted by P.

Program 2.1 Broadcast (A, d)

Task: Broadcast the data in register A of PE 0 to the A registers of the remaining processors of a
dimension d hypercube.
Complexity: Ο(d).

Program 2.2 Broadcast (A, d, k)

Task: Broadcast the data in register A of PE k to the A registers of the remaining processors of a
dimension d hypercube. This procedure assumes the availability of a special value null that is not
the value in the A register of any of the PEs in the hypercube.
Complexity: Ο(d).

Program 2.3 WindowBroadcast (A, k)
Task: An arbitrary dimension hypercube is assumed to be partitioned into subhypercubes of
dimension k. The processor indices in each such subhypercube differ only in their least
significant k bits. Each subhypercube initially contains data in the A register of its single PE with
least significant k bits equal to m0, m1, . . . , mk −1. Data from this PE of each subhypercube is
broadcast to the remaining PEs of the subhypercube.
Complexity: Ο(k).
Applications: Matrix multiplication (Programs 3.2, 3.3, and 3.8), template matching (Programs
5.1 and 5.2), clustering (Programs 7.3 through 7.6), and string editing (Programs 9.1, 9.2, and
9.3).

Program 2.4 WindowBroadcast (A, k)
Task: Same as that of Program 2.3. The originating PE of the data to be broadcast in each subhy-
percube can, however, be different. Each PE has a register selected. The unique originating PE in
each subhypercube has selected equal to true. In the remaining PEs, this register has the value
false. The procedure assumes the availability of a special value null that is not the value in the A

register of any of the PEs in the hypercube.

Program 2.5 SIMDDataSum (A, k)
Task: The sum of the A register values in each subhypercube of dimension k is computed and
stored in the A registers of the PE with the least significant k bits equal to zero in the respective
subhypercubes. Despite the procedure’s name, it works equally well for both SIMD and MIMD
hypercubes.
Complexity: Ο(k).
Applications: Template matching (Program 5.2), and clustering (Programs 7.5 and 7.7).

Program 2.6 SIMDAllSum (A, k)
Task: Same as that of Program 2.5 except that the sum of the A registers of the PEs in each
subhypercube is left in the A registers of all PEs in the subhypercube.
Complexity: Ο(k).

-- --

64 CHAPTER 2. FUNDAMENTAL OPERATIONS

Application: Matrix multiplication (Programs 3.2, 3.3, and 3.8).

Program 2.7 SIMDPrefixSum (A, k, S)
Task: This works on each dimension k, k = log2W, subhypercube of an SIMD hypercube. The
hypercube PE l = iW + q, 0 ≤ q < W is the q’th PE in the i’th dimension k subhypercube. This PE
computes, in its S register, the sum of the A register values of the 0’th through q’th PEs in its
subhypercube, 0 ≤ q < W, 0 ≤ i < w, where w is the number of subhypercubes of dimension k.
Complexity: Ο(k).
Note: An algorithm with the same complexity can be written for MIMD hypercubes using a gray
code indexing scheme within each subhypercube.
Application: String editing (Program 9.2).

Program 2.8 SIMDShift (A, i, W)
Task: Shift the data in the A registers of the PEs of an SIMD hypercube counterclockwise by i

PEs. The shift is done independently in each window/subhypercube of size W. The linear order-
ing of PEs in each subwindow is as per the chain mapping discussed in Chapter 1.
Complexity: Ο(logW) for general i and Ο(log(W /i)) for i a power of 2.
Note: For MIMD hypercubes a shift of i can be done in Ο(logW) time for general i and in Ο(1)
time for i a power of 2. For small i it is quicker to perform i shifts of one each. This would take
Ο(i) time. The gray code indexing scheme is used within each subhypercube. If all even length,
all odd length, or all possible shifts are to be performed on an SIMD hypercube, these can be
done in linear time using a different technique (Section 2.7). A linear time algorithm to perform
these shifts on an MIMD hypercube using a gray code mapping results from the repeated use of
length two or length one shifts.
Applications: One dimensional convolution (Programs 4.1, 4.4, and 4.5), template matching
(Program 5.2), image shrinking (Programs 8.1 and 8.2), image translation (Section 8.3), image
rotation (Section 8.4), and string editing (Program 9.1). The linear time odd/even shifts are used
in Program 4.6 (Ο(1) memory SIMD one dimensional convolution).

Program 2.9 circulate (A)
Task: Circulate the A register data of the PEs in an SIMD hypercube through all the PEs. The
procedure is easily modified to circulate in subhypercubes.
Complexity: Ο(P) where P is the number of processors in the hypercube or subhypercube.
Note: Data circulation in an MIMD machine can be done in the same time using a much simpler
algorithm. This algorithm repeatedly shifts by one and uses the gray code ordering of Chapter 1.
Applications: Consecutive sum (Program 2.10), adjacent sum (Program 2.11), data accumulation
(Program 2.12), matrix multiplication (Programs 3.5, 3.6 and 3.8), one dimensional convolution
(Programs 4.1 and 4.2), template matching (Program 5.1), and clustering (Program 7.2).

Program 2.10 SIMDConsecutiveSum (X, S, M)
Task: Each PE of the SIMD hypercube contains an array of values X [0 .. M − 1]. The j’th PE in
each window of size M computes the sum of the X [j] values in its window, 0 ≤ j < M. The sum
computed by each PE is stored in its S register.
Complexity: Ο(M).
Note: This task can be performed on an MIMD hypercube in the same time using the gray code
scheme and repeated shifts of one.
Application: Clustering (Programs 7.3 and 7.4).

-- --

2.19. SUMMARY 65

Program 2.11 SIMDAdjacentSum(A, T, M)
Task: Each PE of the SIMD hypercube has an array A [0 .. M − 1]. PE j computes, in its T register,
the sum

i=0
Σ

M − 1

A [i]((p + i) mod P)

Complexity: Ο(M + log(P /M)).
Note: This task is easily performed on an MIMD hypercube in Ο(M) time using the gray code
mapping.
Application: Template matching (Program 5.1).

Program 2.12 SIMDAccum (A, I, M)
Task: Each PE, j, of the SIMD hypercube accumulates an array A of I values such that

A [i](j) = I ((j + i) mod P), 0 ≤ i < M

Complexity: Ο(M + log(P /M)).
Note: This task is easily performed on an MIMD hypercube in Ο(M) time using the gray code
mapping.
Applications: One dimensional convolution (Programs 4.1, 4.2, and 4.3), and template matching
(Programs 5.1 and 5.2).

Program 2.14 rank (k)
Task: Rank the selected processors in each size 2k window of the SIMD hypercube.
Complexity: Ο(k).
Note: Can also be done in Ο(k) time on an MIMD hypercube using the gray code order.
Applications: Random access reads (Program 2.20) and writes (Program 2.21).

Program 2.15 concentrate (G, k)
Task: Let G (i) . R be the rank of each selected processor i in the window of size 2k that it is con-
tained in. For each selected PE, i, the record G (i) is sent to the G (i) . R’th PE in the size 2k win-
dow that contains PE i. The procedure needs to be modified for MIMD hypercubes using a gray
code scheme.
Complexity: Ο(k).
Applications: Random access reads (Program 2.20) and writes (Program 2.21).

Program 2.16 distribute (G, k)
Task: This is the inverse of a concentrate.
Complexity: Ο(k).
Applications: Random access reads (Program 2.20) and writes (Program 2.21).

Program 2.17 generalize (G, k)
Each record G (i) has a high destination G (i) . H. The high destinations in each size 2k window
are in ascending order. Assume that G (−1) . H = 0. The record initially in processor i is routed to
processors G (i − 1) . H through G (i) . H of the window provided that G (i) . H ≠ ∞. If G (i) . H = ∞,
then the record is ignored. The procedure as written assumes a PE ordering that corresponds to
that generally used for SIMD hypercubes. The procedure needs to be modified for MIMD hyper-
cubes using a gray code ordering.

-- --

66 CHAPTER 2. FUNDAMENTAL OPERATIONS

Complexity: Ο(k).
Application: Random access reads (Program 2.20).

Program 2.20 Random Access Read
Task: Each PE in an N processor hypercube reads the A register data of some other PE in the
hypercube.
Complexity: Ο(log2N).

Program 2.21 Random Access Write
Task: Each PE in an N processor hypercube sends its A register data to the A register of some
other PE in the hypercube.
Complexity: Ο(log2N) in case of an arbitrary random access write (RAW) or highest/lowest
RAW.
Applications: Clustering (Program 7.7), image rotation (Section 8.4), and scaling (Section 8.5).

Program 2.22 BPC (R, B, k)
Task: The R register data of the PEs in a k dimension hypercube are permuted according to the
BPC permutation B.
Complexity: Ο(k). Actually, the algorithm is optimal in that for each BPC permutation, B, it uses
the fewest possible number of interprocessor routes.
Applications: Clustering (Chapter 7), image transformations (Section 8.1), and string editing
(Program 9.3).

-- --

2.19. SUMMARY 67

Chapter 3

SIMD Matrix Multiplication

3.23 n3 Processors

Suppose that two n × n matrices A [0 : n −1, 0 : n −1] and B [0 : n −1, 0 : n −1] are to be multiplied on
an SIMD hypercube to get the product matrix C where

C [i, j] =
k =0
Σ
n −1

A [i, k] ∗ B [k, j], 0 ≤ i, j < n

Throughout this chapter we shall assume that n is a power of 2. In this section we assume
that the matrix product is to be computed on an SIMD hypercube that has n3 = 23q processors.
I.e., the hypercube dimension is 3q. The n3 processors may be viewed as forming an n × n × n

array. Hence we have a processor at each of the array positions (k, i, j), 0 ≤ i, j, k < n. We shall
use two different notations to reference the hypercube processors. One is the usual one dimen-
sional notation. In this PE(l) refers to the l’th hypercube processor, 0 ≤ l < n3. The second is a
three dimensional notation. In this PE(k, i, j) refers to the processor in position (k, i, j) of our
three dimensional view. The mapping between the one and three dimensional notations is done
using row major order (Horowitz and Sahni 1987). If PE(l) and PE(k, i, j) refer to the same PE
then l = kn 2 + i ∗ n + j. Furthermore if the binary representation of l is l3q −1l 3q −2

 . . . l0 then the
binary representation of k is l3q −1l 3q −2

 . . . l2q; that of i is l2q −1l 2q −1
 . . . lq; and that of j is

lq −1lq −2
 . . . l0 . Q (k, i, j) refers to memory location Q of PE(k, i, j) and k, i, and j, respectively,

represent dimensions 1, 2, and 3 of the three dimensional view.

We begin with A (0, i, j) = A [i, j] and B (0, i, j) = B [i, j], 0 ≤ i, j < n. The product matrix C is
to be stored such that C (0, i, j) = C [i, j], 0 ≤ i, j < n. The strategy used in the matrix multiplica-
tion algorithm of Dekel, Nassimi, and Sahni (1981) is given in Program 3.23. The objective is to
use PE(k, i, j) to compute the product A [i, k] ∗ B [k, j] and then to sum these products over all
processors with the same i and j values (i.e, (∗, i, j)) to get the product values C [i, j]. For this the
A’s and B’s need to be distributed as in step 1. Once this has been done the A’s and B’s are

-- --

68 CHAPTER 3. SIMD MATRIX MULTIPLICATION

multiplied (Step 2) and the products summed (Step 3).

Step 1: [Distribute data] Distribute the data so that A (k, i, j) = A [i, k] and B (k, i, j) = B [k, j],
0 ≤ i, j, k < n.

Step 2: [Multiply] PE(k, i, j) computes C (k, i, j) = A (k, i, j) ∗ B (k, i, j) = A [i, k] ∗ B [k, j],
0 ≤ i, j, k < n.

Step 3: [Add terms] PE(0, i, j) computes

k =0
Σ
n −1

C (k, i, j) =
k =0
Σ
n −1

A [i, k] ∗ B [k, j], 0 ≤ i, j < n.

Program 3.23 Steps in the n3 processor matrix multiplication algorithm of (Dekel, Nassimi, and
Sahni 1981)

Procedure MultCube (Program 3.24 and Program 3.25) implements this strategy. Program
3.24 uses three dimensional notation while Program 3.25 uses one dimensional notation. Con-
sider Program 3.24. The first for loop broadcasts the A’s and B’s in windows of size n (data is
broadcast along the first dimension of the three dimensional interpretation). Following this
broadcast we have

A (k, i, j) = A [i, j], B (k, i, j) = B [i, j], 0 ≤ k <n

As a result, A (k, i, k) = A [i, k] and B (k, k, j) = B [k, j]. To get the desired distribution of Step 1
we, therefore, need to replicate A (k, i, k) over the third dimension and replicate B (k, k, j) over the
second dimension. Both these replications are accomplished by data broadcasts in appropriate
windows. The second for loop of procedure MultCube does this for A and the third one does this
for B. Step 2 is a simple multiplication. Step 3 is implemented as a data sum in windows of size
n. This is done by the fourth for loop. The complexity of the procedure is readily seen to be Ο(q)
= Ο(logn).

3.24 n2 Processors

When n2 = 22q processors are available two n × n matrices can be multiplied in Ο(n) time (Dekel,
Nassimi, and Sahni 1981). As in the previous section, we shall use two notations: a one dimen-
sional notation and a two dimensional notation. In the two dimensional notation we view the
hypercube as an n × n array of processors. This is done using the standard row major mapping
between one and two dimesional arrays (Horowitz and Sahni 1987). In this mapping, PE(l) and
PE(i, j) are the same physical PE iff l = i ∗ n + j.

Initially, A (i, j) = A [i, j] and B (i, j) = B [i, j], 0 ≤ i, j < n. The final condition is C (i, j) =
C [i, j], 0 ≤ i, j <n. The matrix multiplication algorithm of Dekel, Nassimi, and Sahni (1981) con-
sists of two steps (Program 3.26). The overall strategy is to have PE(i, j) compute all n terms in
the sum for C [i, j], 0 ≤ i, j < n. Since, initially, the A and B locations of PE(i, j) are such that their
product is not one of the terms in the sum for C [i, j], the first step of the algorithm of Dekel, Nas-
simi, and Sahni (1981) aligns the A’s and B’s so that following the alignment each processor

-- --

3.2. n2 PROCESSORS 69

procedure MultCube (A, B, C);
{Multiply the n × n matrices A and B on an n3 processor SIMD hypercube}
{Three dimensional notation}
begin

{Step 1: Distribute A and B}
{Broadcast A (0, i, j) and B (0, i, j) on dimension 1}
for m := 0 to q − 1 do
begin

A (k (m) , i, j) ← A (k, i, j), (km = 0);
B (k (m) , i, j) ← B (k, i, j), (km = 0);

end;

{Broadcast A (k, i, k) on dimension 3}
for m := 0 to q − 1 do

A (k, i, j (m)) ← A (k, i, j), (km = jm);

{Broadcast B (k, k, j) on dimension 2}
for m := 0 to q − 1 do

B (k, i (m) , j) ← B (k, i, j), (km = im);

{Step 2: Multiply}
C (k, i, j) := A (k, i, j) ∗ B (k, i, j);

{Step 3: Sum C’s on dimension 1}
for m := 0 to q − 1 do

C (k, i, j) ← C (k, i, j) + C (k (m) , i, j);
end; {of MultCube}

Program 3.24 Matrix multiplication with n3 processors (three dimensional notation)

contains an A and a B value whose product is one of the terms in the C value to be computed by
that processor. The particular alignment scheme used results in

A (i, j) = A [i, i ⊕ j], B (i, j) = B [i ⊕ j, j], 0 ≤ i, j <n

where ⊕ is the exclusive or operator.

As an example consider the case n = 4. Figure 3.34 (a) shows the initial configuration. The
16 processor hypercube is shown as a 4 × 4 array of processors. Each processor is represented as
a square. The first two bits of a processor index are shown at the left of each processor row and
the last two (i.e., least significant) at the top of each column. In the two dimensional notation the
first two bits give the i index while the last two give the j index. Within each processor the index
of the A and B values it contains is given. This is given in decimal notation. So, for example,
PE(10, 11) = PE(2, 3) contains A[2, 3] and B[2, 3] initially. The configuration following the

-- --

70 CHAPTER 3. SIMD MATRIX MULTIPLICATION

procedure MultCube (A, B, C);
{Multiply the n × n matrices A and B on an n3 processor SIMD hypercube}
{One dimensional notation}
begin

{Step 1: Distribute A and B}
{Broadcast A (0, i, j) and B (0, i, j) on dimension 1}
for m := 2q to 3q − 1 do
begin

A (a (m)) ← A (a), (am = 0);
B (a (m)) ← B (a), (am = 0);

end;

{Broadcast A (k, i, k) on dimension 3}
for m := 0 to q − 1 do

A (a (m)) ← A (a), (am = a2q +m);

{Broadcast B (k, k, j) on dimension 2}
for m := q to 2q − 1 do

B (a (m)) ← B (a), (am = aq +m);

{Step 2: Multiply}
C (a) := A (a) ∗ B (a);

{Step 3: Sum C’s on dimension 1}
for m := 2q to 3q − 1 do

C (a) ← C (a) + C (a (m));
end; {of MultCube}

Program 3.25 Matrix multiplication with n3 processors (one dimensional notation)

alignment step is given in Figure 3.35 (b). From the definition of the alignment pattern, PE(10,
11) is to contain A[10, 10 ⊕ 11] = A[10, 01] = A[2, 1] and B[10 ⊕ 11, 11] = B[01, 11] = B[1, 3].

The A and B moving of Step 2 is done using the data circulation scheme of Section 2.6. The
A values are circulated in rows and the B values in columns. This ensures that processors in row i

always have an A value from row i of matrix A and processors in column j always have a B value
from column j of matrix B. Since each row and column is a hypercube of dimension two, the
function f (2, ∗) = 0, 1, 0 is used. First the A values are exchanged along bit 0 of the row index
and the B values are exchanged along bit 0 of the column index. The result is shown in Figure
3.34 (c). The next exchange is along bit 1 (Figure 3.34 (d)) and the final exchange is along bit 0
(Figure 3.34 (e)). As can be seen each processor (i, j) is able to compute a new product term in
the sum for C [i, j] following each exchange. Hence following the last exchange each processor
can complete the computation of the C matrix entry it was assigned to compute.

-- --

3.2. n2 PROCESSORS 71

Step 1: [Alignment] Align the A’s and B’s so that PE(i, j) contains an A and a B value whose
product is one of the terms in the sum for C [i, j], 0 ≤ i, j <n.

Step 2: [Shift-multiply-add]
Initialize C (i, j) to A (i, j) ∗ B (i, j).
for m := 1 to n − 1 do
begin

Move the A’s and B’s so that each processor has an A and a B whose product is a new
term in the sum for C [i, j].
Multiply the A and B value in each processor and add to the C value.

end;

Program 3.26 Steps in the n2 processor matrix multiplication algorithm of Dekel, Nassimi, and
Sahni (1981)

00
00
00

01
01

02
02

03
03

A

B

01
10
10

11
11

12
12

13
13

A

B

10
20
20

21
21

22
22

23
23

A

B

11
30
30

31
31

32
32

33
33

A

B

00 01 10 11

(a) Initial

00
00
00

01
11

02
22

03
33

01
11
10

10
01

13
32

12
23

10
22
20

23
31

20
02

21
13

11
33
30

32
21

31
12

30
03

00 01 10 11

(b) After alignment

01
10

00
01

03
32

02
23

10
00

11
11

12
22

13
33

23
30

22
21

21
12

20
03

32
20

33
31

30
02

31
13

(c) Bit 0 exchange

03
30

02
21

01
12

00
03

12
20

13
31

10
02

11
13

21
10

20
01

23
32

22
23

30
00

31
11

32
22

33
33

(d) Bit 1 exchange

Figure 3.34 n2 processor matrix multiplication (continued)

-- --

72 CHAPTER 3. SIMD MATRIX MULTIPLICATION

02
20

03
31

00
02

01
13

13
30

12
21

11
12

10
03

20
00

21
11

22
22

23
33

31
10

30
01

33
32

32
23

(e) Bit 0 exchange

Figure 3.34 n2 processor matrix multiplication

Procedure MultSquare (Program 3.27 and Program 3.28) implements the strategy of Program
3.26. Program 3.27 uses two dimensional notation while Program 3.28 uses one dimensional
notation.

procedure MultSquare (A, B, C);
{Matrix multiplication with n2 processors}
{Two dimensional notation}
begin

{Step 1: Align data}
for m := 0 to q − 1 do
begin

A (i, j (m)) ← A (i, j), (im = 1);
B (i (m) , j) ← B (i, j), (jm = 1);

end;

{Step 2: Shift-multiply-add}
C (i, j) := A (i, j) ∗ B (i, j);
for m := 1 to n − 1 do
begin

l := f (q, m); {circulation function}
A (i, j (l)) ← A (i, j);
B (i (l) , j) ← B (i, j);
C (i, j) := C (i, j) + A (i, j) ∗ B (i, j);

end;
end; {of MultSquare}

Program 3.27 Matrix multiplication with n2 processors (two dimensional notation)

-- --

3.2. n2 PROCESSORS 73

To establish the correctness of Program 3.27 we need to show that following the first for
loop the data has been aligned as stated above and that at the end of each iteration of the second
for loop each PE has an A and a B value whose product is a term in the sum it is to compute. The
fact that PE(i, j) computes different terms in each iteration follows from the correctness of the
data circulation algorithm of Section 2.6.

?L{square1} (Dekel, Nassimi, and Sahni 1981) Following the first for loop of Program 3.27 we
have

A (i, j) = A [i, i ⊕ j], B (i, j) = B [i ⊕ j, j], 0 ≤ i, j <n

Proof: We provide the proof only for A. The proof for B is similar. Let d = i ⊕ j. The A value
initially in PE(i, j) is to be routed to PE(i, d). From the definition of the exclusive or operator we
obtain dm = jm if im = 0 and dm = j

_
m if im = 1. So when im = 0 no routing along bit m of the column

index is needed. When im = 1 we need to route along bit m. The first for loop of Program 3.27
does precisely this.

procedure MultSquare (A, B, C);
{Matrix multiplication with n2 processors}
{One dimensional notation}
begin

{Step 1: Align data}
for m := 0 to q − 1 do
begin

k := q + m;
A (a (m)) ← A (a), (ak = 1);
B (a (k)) ← B (a), (am = 1);

end;

{Step 2: Shift-multiply-add}
C (a) := A (a) ∗ B (a);
for m := 1 to n − 1 do
begin

l := f (q, m); {circulation function}
k := q + l ;
A (a (l)) ← A (a);
B (a (k)) ← B (a);
C (a) := C (a) + A (a) ∗ B (a);

end;
end; {of MultSquare}

Program 3.28 Matrix multiplication with n2 processors (one dimensional notation)

-- --

74 CHAPTER 3. SIMD MATRIX MULTIPLICATION

?L{square2} (Dekel, Nassimi, and Sahni 1981) At the end of each iteration of the second for
loop of Program 3.27 each PE has an A and a B value whose product is a term in the sum it is to
compute.

Proof: Consider any processor (i, j). Let index (j, m) and index (i, m) be such that
A [i, index (j, m)] and B [index (i, m), j] are in PE(i, j) following iteration m of the second for loop.
For m = 0 we have index (j, 0) = index (i, 0) = i ⊕ j. Since the same sequence of moves is made on
the rows of A as on the columns of B it follows from the proof of Theorem 2.1 that index (j, m) =
index (i, m). So after iteration m the A and B values in PE(i, j) are indeed such that their product is
one of the terms in the sum for C [i, j].

3.25 n2r, 1 ≤ r ≤ n Processors

The strategies used in procedures MultCube and MultSquare can be combined to arrive at an
efficient matrix multiplication algorithm for the case when n2r = 22q +s (n = 2q and r = 2s) proces-
sors are available. The complexity of the combined algorithm is Ο(n /r + logr). Suppose we par-
tition the matrices A, B, and C into blocks of size n /r × n /r each. This is done in a natural way by
tiling the matrices using an n /r × n /r window. The partitioning results in r2 partitions PX [i, j],
0 ≤ i, j < r, where X ∈ {A, B, C}. Figure 3.36 shows the partitions of A superimposed over the ori-
ginal n × n matrix A. The figure is for the case r = 4. The partition PC [i, j] of the product matrix
C is given by the formula

PC [i, j] =
k =0
Σ
r −1

PA [i, k] ∗ PB [k, j]

where PA [i, k] ∗ PB [k, j] is the product of two n /r × n /r matrices.

PA00 PA01 PA02 PA03

PA10 PA11 PA12 PA13

PA20 PA21 PA22 PA23

PA30 PA31 PA32 PA33

A

Figure 3.36 A 4 × 4 partitioning of matrix A

-- --

3.3. n2r, 1 ≤ r ≤ n PROCESSORS 75

The n2r processors of the hypercube may be viewed as an r × r × r array of superprocessors
SP(k, i, j), 0 ≤ i, j, k < r, where each superprocessor represents (n /r)2 normal hypercube proces-
sors. The mapping from a normal processor PE(a), 0 ≤ a < n2r to a superprocessor and within a
superprocessor to an individual processor is done in the following way. Let a2q +s −1a2q +s −2

 . . . a0

be the binary representation of a. PE(a) is a processor of the superprocessor SP(k, i, j) iff
a2q +s −1a2q +s −2

 . . . a2q , a2q −1a2q −2
 . . . a2q −s, and aq −1aq −2

 . . . aq −s are, respectively, the binary
representations of k, i, and j. Furthermore a2q −s −1a2q −s −2

 . . . aq and aq −s −1aq −s −2
 . . . a0 are, respec-

tively, the row and column number of the individual processor within the superprocessor.

We begin with PA[i, j] and PB[i, j] stored in superprocessor SP[0, i, j], 0 ≤ i, j < r. Each of
the (n /r)2 terms in a matrix partition is stored in a single processor within the superprocessor.
The mapping is the natural one with the term in row b and column c of the matrix partition being
stored in the processor at row b and column c of the superprocessor. Using the bit decomposition
provided above the initial configuration is easy to specify using one dimensional notation. Ini-
tially we have

A (i ∗ n + j) = A [i, j] and B (i ∗ n + j) = B [i, j], 0 ≤ i, j < n

At the top level of the matrix multiplication algorithm we work with superprocessors and
matrix partitions. Since the partitions are r × r matrices and the superprocessors form an r × r × r

array the steps of our n3 processor algorithm may be used. These are restated in Program 3.29
using superprocessor and matrix partition terminology.

Step 1: [Distribute matrix partitions] Distribute the partitions so that PA (k, i, j) = PA [i, k] and
PB (k, i, j) = PB [k, j], 0 ≤ i, j, k < r.

Step 2: [Multiply] SP(k, i, j) computes PC (k, i, j) =
PA (k, i, j) ∗ PB (k, i, j) = PA [i, k] ∗ PB [k, j], 0 ≤ i, j, k < r.

Step 3: [Add matrix partitions] SP(0, i, j) computes
k =0
Σ
r −1

PC (k, i, j) =
k =0
Σ
r −1

PA [i, k] ∗ PB [k, j],

0 ≤ i, j < r.

Program 3.29 Steps in matrix multiplication algorithm using superprocessors

Step 2 of Figure 3.37 requires us to multiply two matrix partitions stored in a superproces-
sor. Since a matrix partition is an n /r × n /r matrix and a superprocessor is also viewed as an n /r ×
n /r array of processors this matrix product may be performed using the steps in Program 3.26.
Putting these ideas together and keeping the mapping between the one dimensional indexing
scheme and the three dimensional one for superprocessors and the two dimensional scheme for
processors within a superprocessor we get the procedure of Program 3.30. Its correctness follows
from that of Program 3.25 and Program 3.28.

-- --

76 CHAPTER 3. SIMD MATRIX MULTIPLICATION

procedure MatrixMultiply (A, B, C, n, q, r, s);

{Matrix multiplication with n2r, 1 ≤ r ≤n processors}
{n = 2q and r = 2s}
begin

{Step 1: Distribute PA and PB}
{Broadcast PA (0, i, j) and PB (0, i, j) on dimension 1}
{of the superprocessors}
for m := 2q to 2q + s − 1 do
begin

A (a (m)) ← A (a), (am = 0);
B (a (m)) ← B (a), (am = 0);

end;

{Broadcast PA (k, i, k) on dimension 3 of the superprocessors}
for m := q − s to q − 1 do

A (a (m)) ← A (a), (am = aq +s +m);

{Broadcast PB (k, k, j) on dimension 2 of the superprocessors}
for m := 2q − s to 2q − 1 do

B (a (m)) ← B (a), (am = as +m);

{Step 2: Multiply each n /r × n /r partition}
{Step 2.1: Align data}
for m := 0 to q − s − 1 do
begin

k := q + m;
A (a (m)) ← A (a), (ak = 1);
B (a (k)) ← B (a), (am = 1);

end;

{Step 2.2: Shift-multiply-add}
C (a) := A (a) ∗ B (a);
for m := 1 to n /r − 1 do
begin

l := f (q −s −1, m); {circulation function}
k := q + l ;

A (a (l)) ← A (a);
B (a (k)) ← B (a);
C (a) := C (a) + A (a) ∗ B (a);

end;

{Step 3: Add product partitions along dimension 1{
{of the superprocessors}
for m := 2q to 2q + s − 1 do

C (a) ← C (a) + C (a (m));
end; {of MatrixMultiply}

-- --

3.3. n2r, 1 ≤ r ≤ n PROCESSORS 77

Program 3.30 Matrix multiplication with n2r processors

The complexity of procedure MatrixMultiply (Program 3.30) is seen to be Ο(n /r + logr).
Furthermore when r = n this procedure works exactly as Program 3.25 and when r = 1, it works
exactly as Program 3.28. Interestingly, when r = n /logn the complexity of procedure MatrixMulti-

ply is Ο(logn) and the processor-time product is n3 which is the same as that for the single proces-
sor algorithm on which it is based.

3.26 r2, 1 ≤ r < n Processors

This case is efficiently handled by partitioning A, B, and C into r2 partitions each of which is an
n /r × n /r matrix. PX [i, j], X ∈ {A, B, C}, is stored in PE(i, j). I.e., each PE stores (n /r)2 elements
of each of the matrices A, B, and C. With this partitioning and storage scheme we have an r × r

array of matrix partitions and an r × r array of hypercube processors with each processor holding
the corresponding partitions of A, B, and C. The situation is identical to that of Section 3.2 except
that processors hold partitions rather than single elements.

Matrix multiplication proceeds exactly as in procedure MultSquare except that in each route
a matrix partition rather than a single matrix element is routed. Also, whenever procedure
MultSquare multiplies two elements of A and B and adds to C, the new algorithm will need to mul-
tiply a matrix partition of A with one of B and add to a matrix partition of C. We leave the
development of the formal procedure as an exercise. If t (n) is the time needed to multiply two n

× n matrices using a single processor then the resulting hypercube algorithm for the case of r2

processors, 1 ≤ r <n has complexity Ο(n2/r + rt (n /r)). If the matrix partitions are multiplied using
the classical single processor algorithm, then t (n) = Ο(n3) and the complexity of our r2 processor
multiplication algorithm becomes Ο(n2/r + n3/r2) = Ο(n3 /r2).

3.27 Summary

The performance characteristics of the four matrix multiplication algorithms are summarized in
Figure 3.38. The speedup and efficiency are computed relative to the classical uniprocessor
matrix multiplication algorithm whose complexity is Ο(n3). It is interesting to note that the
efficiency of the n2 and r2 processor algorithms is Ο(1). The efficiency of the n2r processor algo-
rithm is also Ο(1) so long as rlogr ≤ n. While the complexity of this algorithm remains Ο(logn)
for r in the range from n /logn to n, its efficiency declines from Ο(1) to Ο(1/logn).

#Processors Complexity Speedup Efficiency
n3 Ο(logn) Ο(n3/logn) Ο(1/logn)
n2 Ο(n) Ο(n2) Ο(1)
n2r, 1 ≤ r ≤ n Ο(n /r + logr) Ο(n3/(n /r + logr)) Ο(n /(n + rlogr))
r2 , 1 ≤ r < n Ο(n3/r2) Ο(r2) Ο(1)

Figure 3.38 Performance of the matrix multiplication algorithms

-- --

78 CHAPTER 3. SIMD MATRIX MULTIPLICATION

Chapter 4

One Dimensional Convolution

4.28 The Problem

The inputs to the one dimensional convolution problem are vectors I [0 .. N − 1] and T [0 .. M − 1].
The output is the vector C 1D where

C 1D [i] =
v =0
Σ

M −1

I [(i + v) mod N] ∗ T [v], 0 ≤ i <N

In this chapter we develop algorithms to compute C 1D on SIMD and MIMD hypercubes
that have N processors. We assume that M is a power of 2 and consider the following two cases
for the amount of memory available on each hypercube processor

(1) Each PE has Ο(M) memory

(2) Each PE has Ο(1) memory

Our algorithms assume that the vector I is mapped onto the hypercube using the identity
mapping I [i] on PE(i) in the case of an SIMD hypercube and using the gray code mapping I [i] on
PE gray (i) (Section 1.2.2) for MIMD hypercubes.

All but one of our algorithms assume that there are initially (N /M) copies of T in the hyper-
cube with one copy in each block/window of M processors. Within a block, the mapping of T is
the same as that of I. Figure 4.39 shows the initial data distribution for the case N =16 and M = 4.
Lines 1, 3, and 4 define the distribution for an SIMD hypercube while lines 2, 3, and 4 do this for
an MIMD hypercube. p (gray (p)) is the processor index for the case of an SIMD (MIMD) hyper-
cube. The remaining algorithm assumes that T is initially in the control unit of an SIMD hyper-
cube and the control unit is used to broadcast the T values to the hypercube processors as needed.
This broadcast is done using an available Ο(1) time control unit to processors data broadcast
feature.

-- --

-- --

4.2. Ο(M) MEMORY ALGORITHMS 79

0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16

0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3

gray (p)

p

I

T

Iq = I [q]

Figure 4.39 Initial data distribution for N = 16 and M = 4

4.29 Ο(M) Memory Algorithms

When each processor has Ο(M) memory, the most effective way to compute C 1D is to first per-
form a data accumulation on I. Following this, each processor has all the I values needed to com-
pute the corresponding entry of C 1D. Next, the T values are circulated through each block of M

processors. During this circulation, the T values are multiplied by I values and the C 1D values
computed. Procedure MIMD_C 1D_M (Program 4.31), (Ranka and Sahni 1988a), provides the
details for the case of an MIMD hypercube while SIMD_C 1D_M (Program 4.32), (Ranka and
Sahni 1988b), is for an SIMD hypercube.

procedure MIMD_C 1D_M (M);
{MIMD Ο(M) memory algorithm for one dimensional convolution}
begin

MIMDAccum (A, I, M);
b := igray (p) mod M; {relative index of PE in M block}
C 1D (p) := 0;
for j := 1 to M do
begin

C 1D (p) := C 1D (p) + A [b](p) ∗ T (p);
MIMDShift (T, −1, M);
b := (b +1) mod M ;

end;
end; {of MIMD_C 1D_M}

Program 4.31 Ο(M) memory MIMD computation of C 1D

In procedure MIMD_C 1D_M the call to MIMDAccum accumulates in array A [∗](p) the M

image values that processor p needs to compute C 1D (p). The function igray computes the
inverse of the gray code mapping. For example, if gray (8) = 12, then igray (12) = 8. In the for
loop the C 1D value is computed by circulating the T’s in windows of size M. Recall that in the

-- --

-- --

80 CHAPTER 4. ONE DIMENSIONAL CONVOLUTION

procedure SIMD_C 1D_M (M);
{SIMD Ο(M) memory one dimensional convolution}
begin

SIMDAccum (A, I, M);
b := p mod M; {b = index of T in processor p}
C 1D (p) := 0;
for j := 1 to M do
begin

C 1D (p) := CID (p) + A [b](p) ∗ T (p);
l := f (log2M, j);

T (p (l)) ← T (p);
b := b ⊕ 2l;

end;
end; { of SIMD_C 1D_M}

Program 4.32 Ο(M) memory SIMD computation of C 1D

case of an MIMD hypercube data circulation is done by repeatedly shifting the data by 1. Thetime complexity of MIMD_C 1D_M is Ο(M).

Procedure SIMD_C 1D_M is quite similar to its MIMD counterpart. The essential
differences are that it uses the SIMD data accumulation and data circulation algorithms. The
variable b in SIMD_C 1D_M gives the index of the PE from which the current T value originated
and f is the data circulation function of Section 2.6. The data accumulation takes
Ο(M + log(N /M)) time and the for loop takes Ο(M) time. The overall complexity is therefore
Ο(M + log(N /M)).

We can avoid the circulation of T’s on an SIMD hypercube if the T vector is initially in the
control unit. After the accumulation of the I values in the A arrays of the processors, the control
unit can broadcast the T values one at a time to all hypercube processors. When a hypercube pro-
cessor receives a T value it multiplies it with the appropriate A value and adds the result to its par-
tially computed C 1D value. The formal procedure (Prasannan Kumar and Krishnan 1987) is
given in Program 4.33. Making the assumption that a broadcast from the control unit to all the
hypercube processors takes Ο(1) time, the complexity of Program 4.33 is Ο(M + log(N /M)).

4.30 Ο(1) Memory MIMD Algorithm

When only Ο(1) memory per PE is available, we begin by first pairing I values in the processors.
The pair in processor p is (A (p), B (p)) = (I[(jM + 2k) mod N], I [(jM +2k +1) mod N]) where
i = igray (p), j = � i /M � , and k = i mod M. Figure 4.40 gives the initial AB pairs in each PE for the
case N = 16, M = 4. Notice that following the AB pairing, each block of M processors contains all
the image values needed to compute its C1D values. The AB pairing can be done by first concen-
trating the even image values in windows of size M and then concentrating the odd values also in
windows of size M. When N = 16 and M = 4, these two data concentration operations result in the
configuration of the last column of Figure 4.41. This figure also shows how the two data concen-
trations can be done together. First the A and B values in each processor are initialized to the

-- --

-- --

4.3. Ο(1) MEMORY MIMD ALGORITHM 81

procedure Broadcast_C 1D_M (M);
{SIMD Ο(M) memory one dimensional convolution}
{Uses control unit to processors data broadcast feature}
begin

SIMDAccum (A, I, M);

C 1D (p) := 0;
for j := 0 to M − 1 do
begin

broadcast (T [j]); {control unit broadcasts T [j]}
{Let T be the value just received from the control unit}
C 1D (p) := CID (p) + A [j](p) ∗ T;

end;
end; { of Broadcast_C 1D_M}

Program 4.33 Ο(M) memory SIMD computation of C 1D using data broadcast

p i=igray (p) j k I AB

0 0 0 0 I0 I0I1

1 1 0 1 I1 I2I3

3 2 0 2 I2 I4I5

2 3 0 3 I3 I6I7

6 4 1 0 I4 I4I5

7 5 1 1 I5 I6I7

5 6 1 2 I6 I8I9

4 7 1 3 I7 I10 I11

12 8 2 0 I8 I8I9

13 9 2 1 I9 I10 I11

15 10 2 2 I10 I12 I13

14 11 2 3 I11 I14 I15

10 12 3 0 I12 I12 I13

11 13 3 1 I13 I14 I15

9 14 3 2 I14 I0I1

8 15 3 3 I15 I2I3

Iq = I [q]

Figure 4.40 Initial AB pairs for N = 16, M = 4

current I value. Next the B values are shifted by −1. Following this, the even processors have thedesired AB pairs. These are then concentrated in windows of size M = 4. A shift of −1 on the ABpairs suffices for this. Figure 4.42 shows the steps for the case N = 16 and M = 8. In this case theconcentration is done in windows of size 8. For this the pairs in the even processors are firstshifted by −1 and then by −2. If the AB concentration is followed by a shift of −M /2 on the ABregisters such that only PEs with the ’-’ values in the last columns of Figure 4.41 and Figure 4.42update their AB values, the desired pairing of I values is obtained. The formal algorithm is givenin Program 4.34. Its complexity is Ο(logM).

-- --

-- --

82 CHAPTER 4. ONE DIMENSIONAL CONVOLUTION

i=igray (p) M block initial I shift to B shift −1 shift −1
i 0 = 1 i1 = 1

A B AB AB

0 0 I0 I0 I0I1 I0I1

1 0 I1 I1 - I2I3

2 0 I2 I2 I2I3 -
3 0 I3 I3 - -
4 1 I4 I4 I4I5 I4I5

5 1 I5 I5 - I6I7

6 1 I6 I6 I6I7 -
7 1 I7 I7 - -
8 2 I8 I8 I8I9 I8I9

9 2 I9 I9 - I10I11

10 2 I10 I10 I10 I11 -
11 2 I11 I11 - -
12 3 I12 I12 I12 I13 I12I13

13 3 I13 I13 - I14I15

14 3 I14 I14 I14 I15 -
15 3 I15 I15 - -

Iq = I [q]

Figure 4.41 Related pairing for N = 16, M = 4

Once the AB pairing has been done C 1D may be computed by rotating the AB values clock-wise in a window of size N (in a single rotation, B’s move to A’s in the same PE and A’s move toB’s of the next PE) and rotating the T values clockwise in a window of size M. Figure 4.43 showsthe initial AB pairs and T values for the case N = 16 and M = 4. At all times, the product of A (p)and T (p) gives one of the terms needed to compute C 1D (igray (p)) for every PE p. B (p) will bethe next I value needed. Initially, this is true for all processors except those withigray (p) mod M = M − 1. This situation is remedied by replacing B with I in these processors toget the first column labeled AB´. Following a rotation of AB, we get the second column labeledAB. Now, the B value in processors with igray (p) mod M = M − 2 needs to be changed to I (p).With this insight, one arrives at procedure MIMD_C 1D_ 1 (Program 4.35), (Ranka and Sahni1988a). Its correctness is easily established. The complexity of this procedure is readily seen tobe Ο(M).

4.31 Ο(1) Memory SIMD Algorithm

The startegy here is to have each PE compute two quantities A and B. For any PE, A is the sum of
all the C 1D terms that are in the M block containing the PE. B is the sum of all C 1D terms that are
needed by the corresponding PE in the previous M block. The terms contributing to A and B are
shown in Figure 4.44. The A and B values are computed in two stages. In the first, we compute
the contribution to A and B by all I terms Ij for j even. In the next stage, we do this for the case j

odd.

Consider the case M =8. If we begin by computing the terms on the major diagonal of Fig-
ure 4.44, then PEs (0, 1, 2, ,,, 7) compute (I0T0 , I 2T1 , I4T2 , I6T3 , I0T4 , I2T5 ,I 4T6 , I6T7). The I and
T values required by each of the 8 PEs are shown in the first two rows of Figure 4.45. Notice that
if we rotate the I values in windows of size 4 by some amount j, then the T values need to be
rotated by 2j so that each PE has a pair (I, T) whose product is needed in the computation of its A

or B value. For this rotation we use the shift sequences F3 and E3 defined in Section 2.7. Rotating
I by F [3, 0] in size 4 windows and T by E [3,0] in a size 8 window gives the next two rows of Fig-
ure 4.45. The result of performing the remaining rotations is also given in Figure 4.45. Figure

-- --

-- --

4.4. Ο(1) MEMORY SIMD ALGORITHM 83

i=igray (p) M block initial I shift to B shift −1 shift −1 shift −2
i 0 = 1 i 1 = 1 i2 = 1

A B AB AB AB

0 0 I0 I0 I 0I1 I0I1 I0I 1

1 0 I1 I1 - I2I3 I2I 3

2 0 I2 I2 I 2I3 - I4I 5

3 0 I3 I3 - - I6I 7

4 0 I4 I4 I 4I5 I4I5 -

5 0 I5 I5 - I6I7 -
6 0 I6 I6 I 6I7 - -
7 0 I7 I7 - - -
8 1 I8 I8 I 8I9 I8I9 I8I 9

9 1 I9 I9 - I10 I11 I10I 11

10 1 I 10 I10 I 10I11 - I12I 13

11 1 I 11 I11 - - I14I 15

12 1 I 12 I12 I 12I13 I12 I13 -
13 1 I 13 I13 - I14 I15 -
14 1 I 14 I14 I 14I15 - -

15 1 I 15 I15 - - -

Figure 4.42 Related pairing for N = 16, M = 8

4.46 gives the computation of the odd terms.

PE 0 1 2 3 4 5 6 7

I I1 I 3 I5 I7 I1 I3 I 5 I7

T T1 T2 T3 T4 T5 T6 T7 T0

I I5 I 7 I1 I3 I5 I7 I 1 I3

T T5 T6 T7 T0 T1 T2 T3 T4

I I7 I 1 I3 I5 I7 I1 I 3 I5

T T7 T0 T1 T2 T3 T4 T5 T6

I I3 I 5 I7 I1 I3 I5 I 7 I1

T T3 T4 T5 T6 T7 T0 T1 T2

Figure 4.46 Computing the odd terms

-- --

-- --

84 CHAPTER 4. ONE DIMENSIONAL CONVOLUTION

procedure pairing (M);
{pairing I values in AB registers}
begin

i := igray (p); {p is processor index}

{Create needed AB pairs in even processors}
A (p) := I (p);
B (p) := I (p);
MIMDShift (B, −1, P);

{Concentrate from even processors in windows of size M}
for j := 1 to logM − 1 do
begin

C (p) := B (p); MIMDShift (B, −2j −1 , M);
B (p) := C (p), (p j = 0);
C (p) := A (p); MIMDShift (A, −2j −1 , M);
A (p) := C (p), (p j = 0);

end;

{Shift pairs by −M /2 to get them to remaining processors}
C (p) := B (p); MIMDShift (B, −(M /2), P);
B (p) := C (p), (plogM − 1 = 0);
C (p) := A (p); MIMDShift (A, −(M /2), P);
A (p) := C (p), (plogM − 1 = 0);

end; {of pairing}

Program 4.34 Pairing of the I’s

The initial configuration for the I’s can be obtained by concentrating the even I’s. For thisthe even I’s need to first be ranked. The rank of an even processor is simply half its index. Fol-lowing the concentration the even I’s are only in the left half of the size M window. They can becopied into the right half by a single route along bit log2M − 1. Let RankConcCopy (I, M) be theprocedure that does all this.

The remaining details of the algorithm for one dimensional convolution are provided in
Program 4.36, (Ranka and Sahni 1988b). Note that the E’s and F’s are known only to the control
unit. These may be computed, on the fly, in linear time using a stack of height m = logM. The
memory required in each hypercube PE is only Ο(1). Lines 5 through 15 handle the even terms .
Notice that (CShift + 2p) mod M gives the index of the I value currently in C (p). So, if this index is
less than p the term C ∗ D corresponds to the previous block. Otherwise the term C ∗ D is for this
PE. The fact that each PE always has a C and a D whose product contributes to either A or B fol-
lows from the observations that this is so initially and on each iteration, D rotates twice as much
as C. The time complexity of the algorithm is Ο(M + logN).

-- --

-- --

4.4. Ο(1) MEMORY SIMD ALGORITHM 85

line procedure C 1D_ 1(M);

1 {Ο(1) memory SIMD C 1D algorithm}

2 begin

3 A (p) := 0; B (p) := 0; m = logM;

4 {even terms}

5 C (p) := I (p); D (p):= T (p);

-- --

-- --

86 CHAPTER 4. ONE DIMENSIONAL CONVOLUTION

procedure MIMD_C 1D_ 1(M);
{MIMD Ο(1) memory one dimensional convolution}
begin

pairing (M);
C 1D (p) := 0;
for j := 0 to M −1 do
begin

B (p) := I (p), (igray (p) mod M = M−1−j);
C 1D (p) := C 1D (p) + A (p) ∗ T (p);
MIMDShift (A, −1, N);

C (p) := B (p); B (p) := A (p); A (p) := C (p); {interchange A and B}
MIMDShift (T, −1, M);

end;
end; {of MIMD_C 1D_ 1}

Program 4.35 MIMD Ο(1) memory computation of C 1D

P0 I0T0 + I 1T1 + I2T2 + I3T3 + I4T4 + I5T5 + I 6T6 + I7T7

P1 I1T0 + I 2T1 + I3T2 + I4T3 + I5T4 + I6T5 + I 7T6 . I0T7

P2 I2T0 + I 3T1 + I4T2 + I5T3 + I6T4 + I7T5 . I0T6 + I1T7

P3 I3T0 + I 4T1 + I5T2 + I6T3 + I7T4 . I0T5 + I1T6 + I2T7

P4 I4T0 + I 5T1 + I6T2 + I7T3 . I0T4 + I1T5 + I2T6 + I3T7

P5 I5T0 + I 6T1 + I7T2 . I 0T3 + I1T4 + I2T5 + I3T6 + I4T7

P6 I6T0 + I 7T1 . I0T2 + I 1T3 + I2T4 + I3T5 + I4T6 + I5T7

P7 I7T0 . I0T1 + I1T2 + I 2T3 + I3T4 + I4T5 + I5T6 + I6T7

Sums to the left of the "." are A

Sums to the right of the "." are B

Figure 4.44 A and B values to be computed by each PE

6 Cshift (p) := 0;

7 RankConcCopy (C, M);

8 for j := 1 to M/2 do

9 begin

10 A (p) := A (p) + C (p) ∗ D (p), ((CShift (p) + 2p) mod mod M ≥ p);

11 B (p) := B (p) + C (p) ∗ D (p), ((CShift (p) + 2p) mod M < p);

12 SIMDShift (C, F [m, j−1], M/2);

13 CShift (p) := (CShift (p) + F [m, j−1]) mod (M/2);

-- --

-- --

4.4. Ο(1) MEMORY SIMD ALGORITHM 87

PE 0 1 2 3 4 5 6 7

I I0 I 2 I4 I6 I0 I2 I 4 I6

T T0 T1 T2 T3 T4 T5 T6 T7

I I4 I 6 I0 I2 I4 I6 I 0 I2

T T4 T5 T6 T7 T0 T1 T2 T3

I I6 I 0 I2 I4 I6 I0 I 2 I4

T T6 T7 T0 T1 T2 T3 T4 T5

I I2 I 4 I6 I0 I2 I4 I 6 I0

T T2 T3 T4 T5 T6 T7 T0 T1

Figure 4.45 Computing the even terms

14 SIMDShift (D, E [m, j−1], M);

15 end;

16 {odd terms}

17 C (p) := I (p); D (p) := T (p);

18 SIMDShift (C, −1, M); CShift (p) := 1; SIMDShift (D, −1, M);

19 RankConcCopy (C, M);

20 for j := 1 to M/2 do

21 begin

22 A (p) := A (p) + C (p) ∗ D (p), ((CShift (p) + 2p) mod M ≥ p);

23 B (p) := B (p) + C (p) ∗ D (p), ((CShift (p) + 2p) mod M < p);

24 SIMDShift (C, F [m, j−1], M/2);

25 CShift (p) := (CShift (p) + F [m, j−1]) mod (M/2);

26 SIMDShift (D, E [m, j−1], M);

27 end;

28 SIMDShift (B, −M, P);

29 C 1D (p) := A (p) + B (p);

30 end; {of C 1D_ 1}

Program 4.36 Ο(1) memory SIMD algorithm for one dimensional convolution

-- --

-- --

88 CHAPTER 4. ONE DIMENSIONAL CONVOLUTION

Chapter 5
Template Matching

5.32 The Problem

The inputs to the image template matching problem are an N×N image matrix
I [0 .. N − 1, 0 .. N − 1] and an M×M template T [0 .. M − 1, 0 .. M − 1]. The output is an N×N matrix
C 2D where

C 2D [i, j] =
u =0
Σ

M −1

v =0
Σ

M −1

I [(i + u) mod N, (j + v) mod N] ∗ T [u,v], 0 ≤ i, j < N

C 2D is called the two dimensional convolution of I and T. Template matching, i.e., computing
C 2D, is a fundamental operation in computer vision and image processing. It is often used for
edge and object detection; filtering; and image registration (Rosenfeld and Kak 1982, and Ballard
and Brown 1985).

5.33 General Square Templates

We shall provide only a high level description of how template matching can be done on SIMD
and MIMD hypercubes. At this level of description the steps for both types of hypercubes are the
same. In both cases we shall employ the algorithms developed in the previous chapter for one
dimensional convolution.

The assumptions and terminology we shall use are summarized below:

(1) P = N2 PEs are available and both N and M are powers of 2.

(2) The N2 PEs are viewed as an N × N array as described in Chapter 2. We use (i, j) to refer to
the PE in position(i, j) of the N × N processor array.

(3) I [i, j] is initially in the I register of PE(i, j).

(4) Since N and M are powers of 2, the N × N array may further be viewed as composed of
N2/M2 arrays/windows of size M × M. We assume that T is initially in the top left such
array/window.

As in the case of one dimensional convolution, we consider two cases for the amount of
memory available per processor: Ο(M) and Ο(1).

-- --

-- --

5.2. GENERAL SQUARE TEMPLATES 89

5.33.1 Ο(M) Memory

When Ο(M) memory is available, PE(i, j), 0 ≤ i < N, 0 ≤ j < N computes M one dimensional
convolutions S (q), 0≤q < M defined as

S (q) =
r =0
Σ

M −1

I ((i, (j + r) mod N) ∗ T (q, r)

Next, C 2D is obtained by performing an adjacent sum operation along the columns of the N

× N PE array. Program 5.37 gives the steps that need to be performed to compute C 2D. The
complexity of the resulting algorithm is seen to be Ο(M 2 + log(N /M)).

procedure C 2D_M (N, M);

{Template matching with Ο(M) memory per PE}

Step 1: Broadcast T to all M × M windows in the N × N PE array

Step 2: Perform a data accumulation on I. For this operation, the N × N PE array is viewed
as N independent hypercubes with each row forming one such hypercube.
Following the operation, each PE contains the M I values it needs to compute its
S (q)’s.

Step 3: Compute the S (q)’s. Each S (q) is a one dimensional convolution. However, the
data accumulation step of the one dimensional convolution algorithms of Chapter 2
may be omitted as the I values have already been accumulated in Step 2. To go
from one S to another, the T values need to be circulated along the columns of each
M × M window. This is done using the data circulation algorithms of Chapter 2.

Step 4: Compute C 2D (i, j) =
r =0
Σ

M −1

S [r]((i + r) mod N, j). This is done using the adjacent sum

algorithm of Chapter 2 on the columns of the N × N PE array.

end;

Program 5.37 Two dimensional convolution with each PE having Ο(M) memory

5.33.2 Ο(1) Memory

Now, it is not possible for each PE to accumulate the M values of I it needs from its row.
Nor is it possible for a PE to compute the values S (q), 0 ≤ q < M. We may rewrite the definition of
C 2D as

C 2D [i, j] =
r =0
Σ

M −1

CXD [i, r, j]

where

CXD [i, r, j] =
a =0
Σ

M −1

I [(i + r) mod N, (j + a) mod N]*T [r, a]

-- --

-- --

90 CHAPTER 5. TEMPLATE MATCHING

Some of the CXD terms needed for the computation of C 2D (i, j) can be computed within
the M × M PE window that contains PE (i, j) as all the needed I and T values are in the window.
The remaining terms can be computed by the corresponding PE in the window below it as this
window contains the needed I values. Thus each PE computes an E value (for itself) and an F

value (for the corresponding PE in the adjacent upper window).

The E and F values are computed in k iterations. During iteration k, the PEs in the k’th row
of each window compute their E and F values. These rows have index k, M +k, 2M +k, Also

E (aM + k, j) =
r =0
Σ

M −1−k

CXD [aM + k, r, j]

and

F (aM + k, j) =
r =M −k
Σ

M −1

CXD [((a −1)M + k) mod N, r, j]

For this, we note that PE(i, j) is in the i mod M row of the � i /M � ’th window. So, each PE needs
to compute

A = CXD[� i /M � M + k, i mod M − k, j] if i mod M ≥ k

and

B = CXD[� i /M � M + k − M, i mod M − k + M, j] if i mod M < k

Then, the PEs in rows aM + k, 0 ≤ a < N /M can compute E and F by summing the A’s and B’s in
their column and in their window. Once this has been done, C 2D is computed by shifting the F’s
up the columns by M units and adding to the E’s. A high level description of the algorithm is pro-
vided in Program 5.38.

The complexity of the algorithm is Ο(M2 + logN) for MIMD hypercubes and
Ο(M 2 + MlogN) for SIMD hypercubes. The SIMD hypercube compexity may be reduced to
Ο(M + logN) by modifying the Ο(1) memory C1D algorithm. In this modification, each block of
M PEs computes the A and B values for the PEs in its own block (rather than the B values for an
adjacent block). This is accomplished by first shifting the I values by one block so that each M

block has all the I values it needs. Following this shift, each PE will have two I values. One is
the value it had before the shift and the other is the one it received as a result of the shift. Now,
using two passes of the C1D algorithm, each PE can compute first its A value and then its B value.
As a result the final shift of the B values by one block is eliminated. Since the I values needed in
a block of PEs does not change from one iteration of the for loop of Step 2 to the next, the initial
shifting of I and the RankConcCopy steps need to be done just once. Also, the final shifting of the
B’s is eliminated from the C1D algorithm. As a result, all M invocations of procedure C 1D_ 1

from Step 3 of Program 5.38 take only Ο(M 2 + logN) time.

-- --

-- --

5.3. KIRSCH MOTIVATED TEMPLATES 91

procedure C 2D_ 1(N, M);

{Template matching with Ο(1) memory per PE}

Step 1: Broadcast T to all M × M windows in the N × N PE array

Step 2: Repeat Steps 3 and 4 for k := 0 to M − 1

Step 3: PE(i, j) computes CXD [(

�
��

M
i___

�
�� M + k) mod N, i mod M− k, j] if i mod M ≥ k using the

appropriate Ο(1) memory one dimensional convolution algorithm and puts the result in
A, otherwise A = 0;
PE(i, j) computes

CXD [(

�
��

M
i___

�
�

� M + k−M) mod N, i mod M − k + M, j]

if i mod M < k using the appropriate Ο(1) memory one dimensional convolution
algorithm and puts the result in B, otherwise B = 0;

Step 4: Use the data sum operation of Chapter 2, to sum the B’s and A’s in PE (

�
��

M
i___

�
�

� M + k, j)

in F and E respectively. Shift the T values up the columns by 1. The window size for
this shift is M.

Step 5: Shift the F values up the columns by M. The window size for this shift is N. C 2D := E

+ F.

Program 5.38 Two dimensional convolution with each PE having Ο(1) memory

5.34 Kirsch Motivated Templates

Kirsch templates, (Ballard and Brown 1985), are commonly used in image processing. Kirsch
templates of size 1 (M = 3) and 2 (M = 5) are shown in Figure 5.47.

By exploiting the special structure of these templates, template matching can be done more
efficiently. A high level description of the algorithm is given in Program 5.39. Its complexity is
Ο(M). The amount of memory required per PE is also Ο(M). While efficient Ο(1) memory algo-
rithms can also be developed, we shall not do this here as Kirsch templates usually have small M

and it is reasonable to assume this much memory is available.

Steps 3, 4, 5, and 6 can be done efficiently by a simple adaptation of the adjacent sum pro-
cedure of Chapter 2.

-- --

-- --

92 CHAPTER 5. TEMPLATE MATCHING

5.35 Medium Grained Template Matching

In the previous sections we have developed algorithms to perform template matching on a fine
grain hypercube. Such a computer has the property that the cost of interprocessor communication
is comparable to that of a basic arithmetic operation. In this section, we shall consider the tem-
plate matching problem on a hypercube in which interprocessor communication is relatively
expensive and the number of processors is small relative to the image size N. In particular we
shall experiment with an NCUBE/7 hypercube which is an MIMD computer capable of having
up to 128 processors. However, the computer used for the experiments we report on has only 64
processors. The block diagram for this computer is shown in Figure 5.48. The hypercube is
attached to the host computer in a manner akin to the attachment of other peripherals. An
NCUBE program consists of a host program together with programs for each of the hypercube
processors. The host program loads programs and data onto the hypercube processors. The time

-- --

-- --

5.4. MEDIUM GRAINED TEMPLATE MATCHING 93

Step 1: Accumulate in A the next M values of I

Step 2: B [−1] := 0; C [−1] := 0;
for i := 0 to M − 1 do
begin

B [i] := A [i] + B [i −1];

C [i] := A [M −1−i] + C [i −1]
end;

Do exactly one of the following steps depending on the template type.

Step 3: {Templates of types (a) and (e)}

C 2D (i, j) =
a =0
Σ

M −1

(C [(M −3)/2]−B [(M −3)/2])((i + a) mod N, j)

Step 4: {Templates of types (b) and (f)}

C 2D (i, j) =
a =0
Σ

M −1

(C [M −2−a]−B [a −1])((i + a) mod N, j)

Step 5: {Templates of types (c) and (g)}

C 2D (i, j) =
a =0
Σ

(M −3)/2

C [M −1]((i + a) mod N, j)

−
(M +1)/2

Σ
(M −1)

C [M −1]((i + a) mod N, j)

Step 6: {Templates of types (d) and (h)}

C 2D (i, j) =
a =0
Σ

M −1

(C [a −1]−B [M −2−a])((i + a) mod N, j)

Program 5.39 Algorithm for Kirsch templates of Figure 5.47

to perform a two byte integer addition on each hypercube processor is 4.3 microseconds whereasthe time to communicate b bytes to a neighbor processor is approximately 447 + 2.4bmicroseconds.

Several cases of the template matching problem can be studied. These vary in the initial
location of the image and the template and the final location of the convolution (result matrix).
We consider the following cases . In all of these, the template is initially in the host.

1. Host-to-host: The image is in the host initially and the result is to be left in the host also.

2. Hypercube-to-host: The image is initially in the host but the result is left in the hypercube.

3. Hypercube-to-hypercube: The image is initially in the hypercube and the convolution is to
be left there too.

-- --

-- --

94 CHAPTER 5. TEMPLATE MATCHING

Let P be the number of hypercube processors. We assume that P is a perfect square and that√���P divides N. Hence, the hypercube may be visualized as a √���P × √���P array and the N × N convolu-tion matrix can be mapped onto this with each processor getting an N /√���P × N /√���P block. Weassume that each processor has enough memory to hold one copy of the M × M template. As faras mapping the N×N image is concerned, we consider the two possibilities:

(1) Overlap Mapping: In this, each processor gets enough of the image to compute all its con-
volution values. Hence, the processor in position (0, 0) of the mesh gets I[0 .. n /√� �p + m − 2,
0 .. n /√� �p + m − 2].

(2) Nonoverlap Mapping: The image is decomposed into N /√���P × N /√���P blocks. This is done in
the same way as the convolution decomposition. Each processor gets the image block that
corresponds to its convolution block.

Notice that if the overlap mapping is used, then the host must transfer more data to each
hypercube processor than when the nonoverlap mapping is used. However, no interprocessor
communication is needed when the overlap mapping is used. Interprocessor communication is,

-- --

-- --

5.4. MEDIUM GRAINED TEMPLATE MATCHING 95

however, needed when the nonoverlap mapping is used. This can take the form of each processorcommunicating to its north, east, and northeast neighbor processors the image values they needto compute their convolution. Alternatively, each processor can compute the partial convolutionvalues for its north, northeast, and east neighbors and then communicate these values. In eithercase, the communication overhead is the same. In our programs, we adopt the latter strategy.

It is also important to note that the communication overhead in the template matching prob-
lem is small relative to the computing cost. When the overlap mapping is used, Ο(NM √

���

P + PM2)
additional data is transmitted from the host to the hypercube nodes (i.e., in addition to the transfer
of N2 image values). However since the host can send data to several nodes in parallel, the over-
head penalty is not as severe. While the same amount of data has to be transferred between pro-
cessors when the nonoverlap mapping is used, the P processors can work in parallel so that the
transfer time is approximately that for the transfer of Ο(NM /√

���

P + M2) data. In either case, this
overhead is expected to be small compared to the time required for the Ο(N2M2 /P) computing to
be done by each processor.

In each of the three cases listed above, we have assumed that the host broadcasts the tem-
plate to the hypercube processors using a tree expansion scheme.

The NCUBE/7 run times for P = 1, 4, 16, and 64; N = 32, 64, 128, 252, and 512 and
M = 4, 8, 16, and 32 for the overlap memory mapping are given in Figure 5.49 through Figure
5.51. For smaller values of P, the template matching can be done only for small N as there isn’t
enough memory on a hypercube processor to hold the convolution and the image subblocks
assigned to it. The figures show that for the case N = 512, M = 32, and P = 64, the run times for
the host-to-host case are approximately 2.6% higher than that for the hypercube-to-host case and
approximately 13.0% higher than the hypercube-to-hypercube case. This reflects the cost of
transmitting the image and the convolution between the host and the hypercube. The observed
speedup is almost equal to the theoretical maximum of P. The speedup and efficiency for N = 64
and M = 8 are shown in Figure 5.52.

The run times for the nonoverlap mapping are presented only for the hypercube-to-
hypercube case. In this case, there are two possibilities:

(1) Overlap of computation and communication between nodes

(2) No overlap of computation and communication between nodes

The experiments indicate that there is no substantial difference in the run times in the above
two cases. This is because the amount of computation is much larger than the amount of com-
munication between nodes. The run times for the nonoverlap mapping are given in Figure 5.53.
For small template sizes the nonoverlap method is significantly slower than the overlap method.
For larger template sizes the difference in run time is not so significant. Much of the difference in
the run time is attributable to the following observations:

(1) The program for the nonoverlap case is considerably more complex and so has greater
overhead than that for the overlap case.

(2) The data transfer rate from the host to the nodes is much higher than that between nodes.

(3) For larger template size the computation time significantly dominates the communication
time.

-- --

-- --

96 CHAPTER 5. TEMPLATE MATCHING

M

P N 4 8 16 32

32 0.456 1.479 5.391 20.439
1

64 1.832 5.867 21.169 81.485

32 0.142 0.383 1.366 5.223
64 0.524 1.480 5.392 20.4404

128 2.022 5.869 21.170 81.487

32 0.104 0.176 0.478 1.596
64 0.238 0.507 1.477 5.225

128 0.790 1.754 5.394 20.442
16

256 2.925 6.592 21.173 81.491

32 0.270 0.421 0.910 2.590
64 0.428 0.643 1.246 3.172

128 0.933 1.273 2.349 7.029
256 2.724 3.293 7.205 22.069

64

512 9.365 10.597 25.243 81.491

Times are in seconds
M = template size

N = image size
P = number of processors

Figure 5.49 Overlap mapping: Host-to-host

Figure 5.54 shows the time required by a single processor CRAY-2 supercomputer to per-form template matching. These are approximately one fifth of the hypercube-to-hypercube timeson the NCUBE/7 with 64 processors.

M

N 4 8 16 32

64 0.007 0.023 0.086 0.345

128 0.022 0.080 0.300 1.205

256 0.073 0.283 1.118 4.485

512 0.273 1.082 4.273 17.350

Times are in seconds

Figure 5.54 Template matching on CRAY-2

-- --

-- --

5.4. MEDIUM GRAINED TEMPLATE MATCHING 97

M

P N 4 8 16 32

32 0.407 1.308 4.773 18.200
1

64 1.600 5.211 18.891 72.268

32 0.126 0.355 1.233 4.666
64 0.462 1.364 4.860 18.2264

128 1.810 5.367 18.974 72.391

32 0.069 0.146 0.426 1.483
64 0.198 0.456 1.402 5.022

128 0.695 1.643 5.199 18.830
16

256 2.620 6.279 19.875 73.350

32 0.108 0.190 0.459 1.424
64 0.200 0.350 0.832 2.533

128 0.511 0.880 2.111 6.539
256 1.645 2.786 6.788 21.405

64

512 5.968 9.831 24.341 79.440

Times are in seconds

Figure 5.50 Overlap mapping: Hypercube-to-host

Chapter 6
Hough Transform

-- --

-- --

98 CHAPTER 6. HOUGH TRANSFORM

M

P N 4 8 16 32

32 0.376 1.274 4.727 18.134
1

64 1.504 5.094 18.763 72.105

32 0.096 0.320 1.184 4.572
64 0.378 1.275 4.729 18.1364

128 1.506 5.096 18.764 72.107

32 0.028 0.084 0.299 1.146
64 0.098 0.322 1.185 4.573

128 0.380 1.277 4.731 18.138
16

256 1.508 5.097 18.767 72.109

32 0.013 0.027 0.086 0.291
64 0.030 0.086 0.301 1.148

128 0.100 0.324 1.187 4.575
256 0.381 1.279 4.733 18.139

64

512 1.510 5.099 18.768 72.110

Times are in seconds

Figure 5.51 Overlap mapping: Hypercube-to-hypercube

P 1 4 16 64

Speed up 1.00 3.96 11.57 9.12
Host-to-host

Efficiency 1.00 0.99 0.72 0.14

Speed up 1.00 3.82 11.43 14.89
Hypercube-to-host

Efficiency 1.00 0.95 0.71 0.23

Speed up 1.00 3.99 15.82 59.23
Hypercube-to-hypercube

Efficiency 1.00 0.998 0.99 0.93

Times are in seconds

Figure 5.52 Overlap mapping: speedup and efficiency for N = 64 and M = 8

6.36 Introduction

Hough transforms are used to detect straight lines or edges in an image. Let L be a straight line in
the x −y plane. The normal to this line is another straight line that is perpendicular to it and
passes through the origin (0, 0) (Figure 6.55). Let θ be the angle the normal makes with the x-
axis and let r be the length of the normal. All points (xi, yi) on L satisfy the equality

xicosθ + yisinθ = r

-- --

-- --

6.1. INTRODUCTION 99

M
P N 4 8 16 32
1 32 0.505 1.857 7.000 20.450

32 0.139 0.482 1.4174 64 0.514 1.872 7.026 20.497
32 0.045 0.115
64 0.142 0.484 1.42216

128 0.516 1.874 7.031 20.510
32 0.021
64 0.047 0.118

128 0.144 0.487 1.42664

256 0.519 1.878 7.036 20.520

Times are in seconds

Figure 5.53 Nonoverlap mapping: Hypercube-to-hypercube

θ

(0, 0)

normal

line L

x

y (x 1 , y 1)
x 1cosθ

y 1sinθ

x 1

Figure 6.55 A line L and its normal

The Hough transform utilizes this equality to detect straight lines or edges in an image. We tryout a set {θ j | 0 ≤ j < p} of p possible values for the angle θ. This is equivalent to trying out a setof p possible slopes for the lines being detected. A θj and a point (xi, yi) together uniquely definea line L through this point. The length of the normal to this line is given by the above equality.Furthermore, for any θ j, all image points (xi, yi) that have the same normal length,xicosθ j + yisinθ j, lie on the same line L. (This line is uniquely defined by the angle, θ j, and thelength of the normal.) For each θ j, we determine the number of image points that have the samenormal length. By knowing how many image points have the same normal (i.e., same normallength and same normal angle) we can determine the probabilty that the image has a line withthat normal.

Let I [0 .. N −1,0 .. N −1] be an N×N image such that I [x, y] = 1 iff the image point [x, y] is a
possible edge point. I [x, y] = 0 otherwise. The p angle Hough transform of I is the array H such
that

H [i, j] = | {(x, y) | i =
��
xcosθj + ysinθ j

�� , θj =
p
π__(j + 1) and I [x, y] = 1} | .

-- --

-- --

100 CHAPTER 6. HOUGH TRANSFORM

j takes on the integer values 0, 1, . . . , p −1. These correspond to the p angles
θ j =

p
π__(j + 1), 0 ≤ j < p. Hence 0 < θj ≤ π. For θ j in this range and x and y in the range [0, N −1],��

xcosθ j + ysinθ j

�
� is in the range [−√� �2 N, √� �2 N]. Hence H is at most a 2√� �2 N×p matrix.

We shall explicitly consider the computation of H (i, j) only for i > 0. The computation for
the case i ≤ 0 is similar. Hence i is in the range [0, √� �2 N) and j is in the range [0, p). We assume
that N is a power of two and that 2N2 PEs are available. These are viewed as an N×2N array as
discussed in Chapter 1 for SIMD and MIMD hypercubes. Actually, only N×√� �2 N PEs are needed;
however, a hypercube must have a power of 2 processors. Furthermore, it is assumed that p

divides N.

The image pixel I [i, j] is initially stored in PE (i, j) 0 ≤ i, j < N in the above array view.
H [i, j] is stored in PE (i, j) on completion. The hypercube algorithms we develop are conceptu-
ally similar to those developed by Cypher and Sanz (1987) for mesh connected computers. The
development here is from (Ranka and Sahni 1989a).

6.37 MIMD Algorithm

For simplicity, we divide the computation of H [i, j], i > 0, 0 ≤ j < p into four parts. These, respec-
tively, correspond to the cases 0 < j < p /4, p /4 ≤ j < p /2, p /2 ≤ j < 3p /4, and 3p /4 ≤ j < p. First,
consider the case p /4 ≤ j < p /2. Now, π/4 < θj ≤ π/2. The following two lemmas suggest a compu-
tational scheme for this case.

?L{1} When π/4 < θ j ≤ π/2, two pixels (x, y) and (x, y + z), z > 0, can contribute to the count of
the same H [i, j] only if z = 1.

Proof: If (x, y) and (x, y + z) both contribute to the count of H [i, j], then

i =
��
xcosθ j + ysinθj

�� =
��
xcosθj + (y + z)sinθ j

��

for some j, p /4 ≤ j < p /2. Hence

(y + z)sinθ j − ysinθ j < 1

or

zsinθj < 1

Since π/4 < θ j ≤ π/2, sinθj > sin π/4 > 0.5. Since z is a positive integer, only z = 1 can satisfy the
relation zsinθ j ≤ 1.

?L{2} When π/4 < θ j ≤ π/2, two pixels (x, y) and (x + 1, z) can contribute to the count of the same
H [i, j] only if z∈{y, y −1}.

Proof: If (x, y) and (x + 1, z) contribute to the same H [i, j], then

i =
��
xcosθj + ysinθ j

�� =
��
(x + 1)cosθj + zsinθ j

�� .

So,

-- --

-- --

6.2. MIMD ALGORITHM 101

| (x + 1)cosθ j − xcosθj + (z −y)sinθ j | ≤ 1
or

| cosθ j + (z −y)sinθ j | ≤ 1
or

| cotθj + (z −y) | ≤ cosecθ jor
−cosecθ j − cotθj ≤ z −y ≤ cosecθ j − cotθ j

Since y and z are integers and θ j is in the above range, it follows that −1 ≤ z −y ≤ 0. Hence
z∈{y,y −1}.

The computation of H [i, j] for i > 0 and π/4 ≤ θ j < π/2 can be done in two phases. In the
first, subhypercubes of size p×2N compute

h [i, j] = | {(x, y) | i = �� xcosθ j + ysinθj �� , π/4 ≤ θj < π/2, I [x, y] = 1,

 and (x, y) is in this subhypercube}.

In the second phase, the h [i, j] values from the different subhypercubes are summed to get

H [i, j] =
subhypercubes

Σ h [i, j], i > 0, p /4 ≤ j < p /2.

The phase 1 algorithm for each PE in a p×2N subhypercube is given in Program 6.40. In this algo-
rithm, [x, y] denotes a PE index relative to the whole N×2N hypercube and [w, y] denotes the
index of the same PE relative to the p×2N subhypercube it is in. Note that w = x mod p.

The h values are computed in a pipeline manner. The PEs in row 0 of a p×2N subhypercube
initiate a record Z = (i, j, sine, cosine, q) such that h [i, j] = q is the number of pixels on this row
that contribute to h [i, j]. This is done by first computing i for each pixel in row zero (line 7) for a
fixed j = p /2−l −2. ?L{1} is used in lines 23-25 to combine records that represent the same h [i, j]

entry. This row of Z records created in row zero moves down the p×2N subhypercube one row per
iteration (line 26). Lines 11-21 update the row of Z values received. Each such row corresponds
to a fixed j. For this j, PE[w, y] determines the h entry [i´, j] it is to contribute to (line 14). If this is
the same entry as received from PE[w −1,y] then the two are added together. If i = φ for the
received entry, then [i´, j] can occupy this Z space. If i ≠ φ, then from Lemma 3.2 we know that Z

can combine only with the new entry [i´, j] of PE[w, y −1].

Following the iteration l = 5p /4−1, the last initiated row (i.e., j = p /4) has passed through
row p −1 of the p×2N subhypercube. At this time, the PEs in row r of the subhypercube contain
records with j = p /4 + r, 0 ≤ r < p /4. The records in each row may be reordered such that the
record in PE[w, y] has y = i by performing a random access write. Because of the initial ordering
of i values in a row, this random access write can be performed in Ο(logN) time by eliminating
the sort step.

The phase 2 summing of the h [i, j] values is now easily done in Ο(logN) time using win-
dow sum. Since the phase 1 algorithm of Program 6.40 only shifts by 1 along columns and/or
rows, each iteration of this algorithm takes only Ο(1) time. Hence the complexity of the phase 1
algorithm is Ο(p). The overall time needed to compute H for p /4 ≤ x < p /2 is therefore
Ο(p + logN).

-- --

-- --

102 CHAPTER 6. HOUGH TRANSFORM

1 for l := 0 to 5p /4−1 do
2 begin
3 if (w = 0) and (l < p /4) then
4 begin {row 0 initiates next θ j}
5 create a record Z = (i, j, sine, cosine, q) with

6 sine = sin (θ), cosine = cos (θ), where θ =
p
π__(p /2 − l + m);

7 i = � x cosine + y sine � ; j = p /2−l −1; q = I [x, y];
8 end
9 else begin
10 if max{1,l −p /4 + 1} ≤ w ≤ l and y < N

11 then begin {add in this PE’s contribution}
12 Let Z be the record received from PE (w −1, y);
13 Let i´ = � x cosine + y sine � and q´ = I [x, y];
14 if i = i´ then set q = q + q´

15 else if i = φ then set i = i´ and q = q´

16 else send q to PE(x, (y −1) mod 2N)

and set Z = (i´, j, sine, cosine, q´)
17 if a q is received from PE (x, y + 1)

update own q to q + received q

18 end
19 else if y > N and a Z is received from PE (x, (y + 1) mod 2N)

20 then send old Z (if any) to PE on left
21 end;
22 {combine records with same (i, j) values}
23 if (� x cosine + y sine � = � x cosine + (y −1) sine �) and (0 < y < N)
24 then send h to PE[x, y −1] and set i = φ
25 else if a q value is received set q = q + received q;
26 send Z to PE ((w + 1) mod p,y);
27 end;

Program 6.40 MIMD algorithm

The remaining three cases for j are done in a similar way. Actually, the four cases need notbe computed independently as suggested above. In particular, all the computation followingphase 1 can be done in parallel for all the cases.

6.38 SIMD Algorithms

We develop two Ο(p + logN) SIMD hypercube algorithms. One uses Ο(logN) memory per PE
while the other uses Ο(1). The Ο(1) memory algorithm is slightly more complex than the Ο(logN)
memory one. Both algorithms are adaptations of our MIMD algorithm. The computations follow-
ing phase 1 (Program 6.40) are easily performed in Ο(logN) time on an SIMD hypercube using
Ο(1) memory per PE. So we concentrate on adapting phase 1. The phase 1 algorithm performs
Ο(p) unit shifts along rows and columns of p×2N subhypercubes. In an SIMD hypercube, each
such row shift takes Ο(logN) time while each unit column shift takes Ο(logp) time. So a direct
simulation of phase 1 takes Ο(plog (Np)) time.

-- --

-- --

6.3. SIMD ALGORITHMS 103

6.38.1 Ο(logN) Memory Per PE

In this case, we divide the 5p /4 iterations of the for loop of Program 6.40 into blocks of
logN consecutive iterations. In each such block, a Z record initially in PE[x, y] can be augmented
by pixel values in PEs [x + l, y −m], 0 ≤ l < logN, −1 ≤ m < logN. To avoid unit shifts along the
rows, each PE[q,r] begins by accumulating the pixel value in PE[q, r −m], −1 ≤ m < logN. Now it
is necessary to route the Z records only down a column; i.e., a Z record initially in PE [x, y] needs
to visit PEs [x + l,y], 0 ≤ l < logN. These PEs contain the pixel values needed to update Z to its
values following the block of iterations in Program 6.40. This routing is done using the circula-
tion algorithms in windows of size logN rather than by unit shifts. The initial pixel accumulation
takes Ο(logN) time and the circulation and Z updates also take Ο(logN) time. Following the circu-
lation, the Z records return to their originating PEs and need to be routed left and down by a dis-
tance of Ο(logN). This can be accomplished in Ο(logN) time on an SIMD hypercube. In this way,
we are able to simulate Ο(logN) iterations of the MIMD algorithm in Ο(logN) time on an SIMD
hypercube. Hence the overall asymptotic run time of the SIMD simulation is the same as that of
the original MIMD algorithm.

6.38.2 Ο(1) Memory Per PE

When log2N /p ≤ c for some constant, a careful analysis shows that using the strategy
employed in the Ο(logN) memory algorithm, the memory requirements can be reduced to Ο(1). In
any logN block of iterations, two pixels [x, y] and [w, z] contribute to the same Z record only if

�
xcosθ + ysinθ � =

�
wcosθ + zsinθ �

Since w ≤ x + logN −1 during the logN iterations, we get

| (logN −1)cosθ + (z −y)sinθ | ≤ 1

or

−cosecθ ≤ (logN −1)cotθ + z −y ≤ cosecθ

or

−cosecθ − (logN −1)cotθ ≤ z −y ≤ cosecθ − (logN −1)cotθ

For any fixed θ∈{π/4, π/2},

z∈[y −(logN −1)cotθ − cosecθ, y − (logN −1)cotθ + cosecθ]

or

z∈[y −(logN −1)cotθ−√� �2 , y −(logN −1)cotθ + √� �2]

-- --

-- --

104 CHAPTER 6. HOUGH TRANSFORM

There are only a constant number of integers in this range. During a logN block of itera-tions, Z records with j value differing by up to logN −1 may pass through a given PE. This
corresponds to a θ variation from θ1 to θ2 where θ2 − θ1 =

p
π__(logN −1).

Hence the leftmost column from which a contributing pixel is required has a maximum
range of

cosecθ1 + (logN −1)cotθ1 − cosecθ2 − (logN −1)cotθ2

 ≤ cosecθ1 − cosecθ2 + (logN −1)(cotθ1 − cotθ2)

 ≤ cosecπ/4 + (logN −1)
sinθ1sinθ2

cosθ1sinθ2 − cosθ2sinθ1_____________________

 < cosecπ/4 + 2(logN −1)sin (θ2 − θ1)

 < cosecπ/4 + 2(logN −1)(θ2 − θ1)

 = cosecπ/4 + 2(logN −1)(logN −1)π/p

 < cosecπ/4 + 2πc

Hence each PE need accumulate only a constant number of pixels from its row rather than
the Ο(logN) pixels being accumulated in the Ο(logN) memory algorithm. This accumulation is
done in Ο(logN) time. The run time is the same as that of the Ο(logN) memory algorithm, but the
memory requirements are reduced to Ο(1).

6.39 NCUBE Algorithms

6.39.1 Two NCUBE Algorithms

We view the P hypercube nodes as forming rings (Chapter 1). For any node i, let left (i) and
right (i), respectively, be the node counterclockwise and clockwise from node i. Let logical (i) be
the logical index of node i in the ring. The N×N image array is initially distributed over the nodes
with each node getting an N×N /p block. Logical node 0 gets the first block, logical node 1 the
next block, and so on. Similarly, on completion, the 2√� �2 N×p Hough array H is distributed over
the nodes in blocks of size 2√� �2 N×p /P. We assume that the number of hypercube nodes P divides
the number of angles p as well as the image dimension N. It is further assumed that the threshold-
ing function has already been applied to the pixels and each node has a list of pairs (x, y) such
that I [x, y] passes the threshold. We call this list the edge list for the node.

Our first algorithm is given in Program 6.41. This algorithm runs on each hypercube node.
As remarked earlier, each node has an edge list and an H partition. The H partitions move along
the ring one node at a time. When an H partition reaches any node, the edge list of that node is
used to update it, accounting for all contributions these edges make to this H partition. Procedure
UpdateHPartition does precisely this. jBegin is the j value corresponding to the first angle
(column) in the H partition currently in the node. size = p /P is the number of columns in an H

-- --

-- --

6.4. NCUBE ALGORITHMS 105

procedure UpdateHpartition(H);
begin

for each (x, y) in edge list do
for (j : = jBegin to jBegin + size−1 do
begin

θ =
p
π__(j + 1);

i = xcosθ + ysinθ;
increment H [i,theta] by 1;

end;
end; {of UpdateHpartition}

l : = logical index of this node, size:= p /P;
jBegin : = size∗l;
initialize own H partition to zero;
for i : = 0 to P −1 do
begin

UpdateHpartition ;
send own H partition to node on right;
receive H partition from node on left;
jBegin := (jBegin − size) mod p;

end;

Program 6.41 Non-overlapping algorithm to compute H

partition.

In the algorithm of Program 6.41 no attempt is made to overlap computation with communi-
cation. Following the send of an H partition to its right neighbor, the node is idle until the receive
of the H partition from its left neighbor is complete. Figure 6.56 shows the activity of a node as a
function of time.

Compute send/receive Compute send/receive . . .

0 time →

Figure 6.56 Node activity using Program 6.41

During the compute phase, an H partition is updated. Let tc be the time needed to do this.
Let tt be the time for an H partition to travel from a sending node to its destination node. So tt is
the elapsed time between the initiation of the transfer and the receipt of the partition. The time
required by the nonoverlapping algorithm of Program 6.41 is P (tc + tt).

-- --

-- --

106 CHAPTER 6. HOUGH TRANSFORM

l : = logical index of this node; size = p /P;
jBegin := size∗l;
for i : = 0 to P −1 do
begin

if i = 0 then
begin

initialize own H partition to zero;
UpdateHPartition(H);

end
else
begin

initialize T to zero;
Update H Partition (T);
Receive H Partition from left (l);
H : = H + T;

end;
send H to right (l);
jBegin : = (jBegin − size) mod p

end;
end;

Program 6.42 Overlapping algorithm for H

Our second algorithm, (Program 6.42), attempts to overlap as much of the transmission timett with computation. This, unfortunately, results in an increase in the computation time as someadditional work is to be done. At the end of each iteration of the for loop, the H partition in anode l is sent to the node on its right. The next iteration proceeds while the H partition is in tran-sit. For this, a temporary space T of the same size as H is used to accumulate the contribution ofthis node’s edge list to the H partition it has yet to receive from its left neighbor. Following thiscomputation, the received H portion and T are added as the resulting H partition transmitted to theright.

Relative to the nonoverlapping algorithm, the overlapping algorithm does P −1 initializa-
tions of T and executions of H : = H + T extra computational work. Let tinit be the time to initialize
T and tadd the time to execute H : = H + T. If tt ≤ tinit + tc, the time diagram has the form shown in
Figure 6.57 (a). The overall time for the algorithm is Ptc + (P −1)(tinit + tadd) + tt when tt ≤ tinit + tc.
So if tinit + tadd < tt, the overlapping algorithm will outperform the nonoverlapping algorithm.

When tt = tinit + tc + δ, δ > 0, the time diagram is as in Figure 6.57 (b). In this case, the algo-
rithm run time is tc + (P −1)tadd + Ptt = Ptc + (P −1)(tinit + tadd + δ) + tt. For the overlapping algo-
rithm to outperform the nonoverlapping algorithm, we need tinit + tadd + δ < tt.

6.39.2 Load Balancing

The preceding analysis is somewhat idealistic as it assumes that tc is the same in each node.
Actually, the size of the edge list in each node is different and this difference significantly
impacts the performance of the algorithm. The node with the maximum number of edges
becomes a bottleneck. To reduce the run time, one may attempt to obtain an equal or near equal
distribution of the edges over the P nodes. Note that even though the image matrix I is equally
distributed over the nodes, the edge lists may not be, as a different number of pixels in each I

partition will pass the threshold. We shall use the term load to refer to the number of pixels in a
node that passes this threshold. I.e., load is the size of the nodes’ edge list. Two heuristics to

-- --

-- --

6.4. NCUBE ALGORITHMS 107

tc tinit + tc tadd tinit + tc tadd

tt tt

(a) tt ≤ tinit + tc

tc tinit + tc ∆ tadd tinit + tc ∆ tadd

tt tt

(b) tt = tinit + tc + ∆, ∆ > 0

Figure 6.57 Node activity as a function of time

balance the load are given in Program 6.43 and Program 6.44. In both, load balancing is accom-plished by averaging over the load in processors that are directly connected. The variables usedhave the following significance
MyLoad = current load in the node processorHisLoad = load in a directly connected node processorMyLoadSize = size of the load in the node processorHisLoadSize = size of the load in a directly connected node processoravg = average size of the load of the two processors

procedure LoadBalance1;
begin

for i : = 0 to CubeSize do
begin

Send MyLoad to neighbor processor along dimension i;
Receive HisLoad from neighbor processor along dimension i

and append to Myload;
avg = (MyLoadSize + HisLoadSize + 1)/2;
if (MyLoadSize > Avg) then MyLoadSize = Avg

else if (HisloadSize > Avg)

then MyLoadSize := MyLoadSize + HisLoadSize − Avg ;
end;

end; {of LoadBalance 1}

Program 6.43 First load balancing heuristic

The only difference between the two variations is that in the first one a processor transmits
its entire work load (including the necessary data) to its neighbor processor, while in the second
variation only the amount in excess of the average is transmitted. However, in order to achieve
this reduction in load transmission, it is necessary to first determine how much of the load is to be
transmitted. This requires an initial exchange of the load size. Hence variation 2 requires twice as
many message transmissions. Each message of variation 2 is potentially shorter than each mes-
sage transmitted by variation 1. We expect variation 1 to be faster than variation 2 when the
number of bytes in MyLoad and HisLoad is relatively small and the time to set up a data

-- --

-- --

108 CHAPTER 6. HOUGH TRANSFORM

procedure LoadBalance 2;
begin

for i : = 0 to CubeSize do
begin

Send MyLoadSize to neighbor processor along dimension i;
Receive HisLoadSize from neighbor processor along dimension i;
avg := (MyLoadSize + HisLoadSize + 1)/2;
if (MyLoadSize > Avg) then
begin

Send extra load (MyLoadSize −Avg) to neighbor processor
along dimension i;
MyLoadSize := Avg ;

end
else if(HisLoadSize > Avg) then
begin

Receive extra load (Avg −HisLoadSize) from neighbor
processor along dimension i;
MyLoadSize := MyLoadSize + HisLoadSize − Avg ;

end;
end;

end; {of LoadBalance 2}

Program 6.44 Second load balancing heuristic

transmission relatively large. Otherwise, variation 2 is expected to require less time.

6.39.3 Experimental Results

The nonoverlapping and overlapping algorithms of Section 6.4.1, as well as the load balancing
heuristics of Section 6.4.2 were programmed in C and run on an NCUBE/7 hypercube with 64
nodes. Experiments were conducted using randomly generated images of size N×N for N = 32,
64, 128, 256, and 512. The percentage of pixels in an N×N image that passed the threshold was
fixed at 5%, 10%, or 20%. The number of edge pixels in each nodes I partition was determined
using a truncated normal distribution with variance being one of 4%, 10%, and 64% of the mean.
In all cases, p was equal to 180.

The run time of the two load-balancing heuristics was approximately the same, with the
second heuristic having a slight edge. Furthermore, the time to load balance is less than 2% of the
overall run time (load balance followed by Hough transform computation). The run time of the
nonoverlapping algorithm, both with and without load balancing, is given in Figure 6.58 through
Figure 6.60 for the cases of P = 4, 16, and 64, respectively. We see that as the load variance
increases from 4% to 64%, the run time of the nonoverlapping algorithm without load balancing
increases significantly. In fact, it almost doubles. With load balancing, however, the run time is
quite stable. Furthermore, it is always less than the run time for 4% variance without load balanc-
ing. When the variance in load is 64%, load balancing results in a 25% to 53% reduction in run
time!

-- --

-- --

6.4. NCUBE ALGORITHMS 109

Note that the average load per node when P = 4 and N = 128 is the same as when P = 16 andN = 256 and when P = 64 and N = 512. From the experimental data we see that the run timeremains virtually unchanged as P increases, provided the load per node is unchanged. Hence thealgorithm scales well.

The run times for the overlapping algorithm with load balancing are given in Figure 6.61.
These times are generally slightly larger than those for the nonoverlapping algorithm with load
balancing. So, the computational overhead introduced by the overlapping algorithm more or less
balances the positive effects of overlapping computation and communication. For comparison
purposes, the run times on a single hypercube node are given in Figure 6.62 for the cases N = 16,
32 and 64. The case N = 128 could not be run for lack of sufficient memory.

Figure 6.52 gives the speedup and efficiency figure achieved by the nonoverlapping algo-
rithm with load balancing for the cases: variance = 64%, %edges = 20, and N = 64 and 128.

-- --

-- --

110 CHAPTER 6. HOUGH TRANSFORM

-- --

-- --

6.4. NCUBE ALGORITHMS 111

-- --

-- --

112 CHAPTER 6. HOUGH TRANSFORM

Block % P = 4
Size edges 4 % 16 % 64 %

32 × 32 5 0.3704 0.3689 0.3708

10 0.6424 0.6425 0.6925

20 1.1862 1.1851 1.1857

5 1.3030 1.3011 1.3009

10 2.3686 2.3680 2.361464 × 64

20 4.4927 4.4967 4.4956

5 4.7045 4.6999 4.7019

10 8.9787 8.9760 8.9835128 × 128

20 17.5374 17.5426 17.5304

Figure 6.61

Image Size % edges Time in Seconds

5 0.3005

10 0.563616 × 16

20 1.1016

5 1.1597

10 2.220932 × 32

20 4.3527

5 4.4399

10 8.719464 × 64

20 17.2660

Figure 6.62 Number of nodes = 1

-- --

-- --

6.4. NCUBE ALGORITHMS 113

edges no. of Image = 64 × 64 Image = 128 × 128
Nodes Time Speedup Time Est.Speedup

5 1 3.8603 1.0000
4 0.9787 3.9440 0.3964 3.9440

16 0.2844 13.5728 1.0734 14.5640
64 0.1551 24.8754 6.3414 45.7945

10 1 7.6151 1.0000
4 1.91169 3.9724 8.3301 3.9724

16 0.5263 14.4682 2.2187 14.9288
64 0.2046 37.2515 0.6278 52.7058

20 1 15.6470 1.0000
4 3.9246 3.9868 17.0167 3.9868

16 1.0529 14.8604 4.4732 15.1660
64 0.3374 46.3741 1.1777 56.6400

Figure 6.52 No overlap between communication/computation Variance of edges = 64%

Chapter 7
Clustering

7.40 Introduction

A feature vector v is a set of measurements (v 1 , v 2 , . . . , vM) which map the important properties of
an image into a Euclidean space of dimension M (Ballard and Brown 1985). Clustering partitions
a set of feature vectors into groups. It is a valuable tool in exploratory pattern analysis and helps
making hypotheses about the structure of data. It is important in syntactic pattern recognition,
image segmentation and registration. There are many methods for clustering feature vectors (Bal-
lard and Brown 1985, Duda and Hart 1973, Fukunaga 1972, Fu 1974, Rosenfeld and Kak 1982,
and Tou and Gonzalez 1974). One popular technique is squared error clustering.

Let N represent the number of patterns which are to be partitioned. Each pattern has M

features (M is usually less than N). Let F [0 .. N −1, 0 .. M −1] be the feature matrix such that F[i, j]
denotes the value of the j’th feature in the i’th pattern. Let S1 , S2 , ..., SK be K clusters. Each

-- --

-- --

114 CHAPTER 7. CLUSTERING

pattern belongs to exactly one of the clusters. Let C [i] represent the cluster to which pattern ibelongs. Thus, we can define Sk as
Sk = {i

�
C [i] = k}, 0 ≤ k < K

Further,
�
Sk

�
is the cardinality or size of the partition Sk. The center of cluster k is a 1×M vectordefined as:

center [k, j] = �
Sk

�
1____

i∈Sk

Σ F [i, j], 0 ≤ j < M

The squared distance d 2 between pattern i and cluster k is
d 2[i, k] =

j=0
Σ

M −1

(F [i, j] − center [k, j])2

The squared error for the k’th cluster is defined as
E 2[k] =

i∈Sk

Σ d 2[i, k], 0 ≤ k < K
and the squared error for the clustering is

ERROR [K] =
k =0
Σ

K −1

E 2[k]

In the clustering problem, we are required to partition the N patterns such that the squared
error for the clustering is minimum. In practice, this is done by trying out several different values
of K. For each K, the clusters are constructed using an iterative refinement technique in which we
begin with an initial set of K clusters; move each pattern to a cluster with which it has the
minimum squared distance; and recompute cluster centers. The last two steps are iterated until
no pattern is moved from its current cluster. One pass of the algorithm is given in Program 7.45.

Step 1: [Cluster Reassignment]
NewCluster [i] := q such that d 2[i, q] =

0 ≤ k < K
min {d 2[i, k]}

{ties are broken arbitrarily}

Step 2: [Termination criterion and cluster update]
if NewCluster [i] = C [i], 0 ≤ i < N then terminate
else C [i] := NewCluster [i], 0 ≤ i < N;

Step 3: [Cluster center update]
Recompute center [i, j], 0 ≤ i < K, 0 ≤ j < M using the new cluster assignments;

Program 7.45 One pass of the iterative cluster improvement algorithm

One pass of the cluster improvement algorithm takes Ο(NMK) time on a uniprocessor com-
puter. Generally several passes are needed before an acceptable K and corresponding clustering
is obtained. In this chapter we consider clustering on both a hypercube with NM processors as
well as on a 64 processor NCUBE hypercube.

7.41 NM Processor Algorithms

-- --

-- --

7.2. NM PROCESSOR ALGORITHMS 115

7.41.1 Preliminaries

We shall assume that N, M, and K are powers of 2 and that the number of processors in the
hypercube is NM. We shall view these processors as an N×M array. Further, in this section we
shall explicitly consider only the case of an SIMD hypercube. The algorithm for an MIMD
hypercube is quite similar.

The initial configuration has F [i, j] in the F register of PE(i, j). That is, F (i, j) = F [i, j],
0 ≤ i < N, 0 ≤ j < M. Also, the center matrix is stored in the top K rows of the N×M hypercube
such that center (i, j) = center [i, j], 0 ≤ i < K, 0 ≤ j < M.

In addition to some of the operations developed in Chapter 2 we shall need procedures for
term computation, distance computation, and summing random access write (SRAW). These are
described next.

Term computation is done independently and in parallel on all K×1 column windows of the
NM PE hypercube. The i’th PE of each such window has an F and center value, F (i) and center (i),
initially. Each PE, i, of the window computes the K values

term [k](i) = (F (i)− center (k))2 , 0 ≤ k < K

This computation is done by circulating the center values through the K×1 window as in
Program 7.46. The complexity of SIMDTerm is Ο(K).

procedure SIMDTerm (X, K);
begin

{index p of processor at (i, j) is p = iK + j}
S (p) := center (i, j);
in (p) := i mod K;
term [in (p)](p) := (F (p) − S (p))2;
for q := 1 to K −1 do
begin

l := f (log2M, q);
S (p) ← S (p (l));
in (p) := in (p) ⊕ 2l;
term [in (p)](p) := (F (p) − S (p))2;

end;
end; {of SIMDTerm}

Program 7.46 Term computation

Distance computation is done independently and in parallel in all S×S windows where S is a
parameter to the operation. The PE in position (i, j) of the window computes

dist (i, j) =
q =0
Σ
S −1

(F (i, q) − center (j, q))2 , 0 ≤ i < S, 0 ≤ j < S

-- --

-- --

116 CHAPTER 7. CLUSTERING

The computation of dist is quite similar to computation of the matrix product C = A∗B where
C, A, and B are S×S matrices. In fact, if we let

A = F and B = center T (i.e., Transpose of center)

and replace A [i, k] ∗ B [k, j] by (A [i, k] − B [k, j])2 in the definition of matrix product, we end up
with the definition of dist. Hence, using S2 processors, dist may be computed as follows:

Step 1: Compute B = Transpose of the center matrix

Step 2: Use the matrix product procedure MultSquare of Chapter 3 to ‘‘multiply’’ F and B.
However, each time two terms of F and B are to be multiplied, compute the square of
their difference instead.

An S ×S matrix stored one element per processor can be transposed in Ο(logS) time as transpose is
a BPC permutation. Further, two such matrices can be ‘‘multiplied’’ in Ο(S) time using S2 pro-
cessors and a modified version of procedure MultSquare. Hence the complexity of the resulting
distance computation procedure is Ο(S).

An SRAW is a version of the combining random access write of Chapter 2 in which the ele-
ments being combined are summed. This is done in K×1 column windows. The K PEs of a win-
dow originate data A (i) that is to be sent to the dest (i)’th PE in the window. If two or more PEs
have data that is to be sent to the same PE, then their sum is needed at the destination PE. Thus,
following the operation, the j’th PE in the K×1 window has

B (j) =
dest (i)=j

Σ A (i), 0 ≤ j < K

This can be done in Ο(log2K) time using the combining random access write algorithm of
Chapter 2. In this, when two A’s reach the same PE, they are replaced by a single A which is the
sum of the two.

7.41.2 Cluster Reassignment

To parallelize Program 7.45 we need to parallelize the cluster reassignment and cluster
update steps (i.e., steps 1 and 3). For cluster reassignment we shall consider the two cases:

(1) Each processor has Ο(K) memory

(2) Each processor has Ο(1) memory

Since cluster updating does not benefit from more than Ο(1) memory per processor, we
consider only one case for this step.

-- --

-- --

7.2. NM PROCESSOR ALGORITHMS 117

7.41.2.1 Ο(K) Memory Per Processor

The cases K ≤ M and K > M result in two slightly different algorithms. The algorithm for the
case K ≤ M is given in Program 7.47 while that for the case K > M is given in Program 7.48. In
Program 7.47, we begin by broadcasting the K×M cluster center matrix to the remaining N /K − 1
K×M windows of the N×M hypercube. This is done using a window broadcast. Next, in Step 2,
PE(i, j) computes term [q] = (F [i, j] − center [q, j])2 , 0 ≤ q < K. This is done by circulating the
center values through column windows of size K×1. The objective of Steps 3 and 4 is to compute
d 2(i, k), 0 ≤ i < K. d 2(i, k) is stored in the d 2 register of PE (i, k). First, in Step 3 the j’th PE in
each 1×K row window computes the sum of the K term [j] values in the window (i.e., A (j) =

q∈1×K window
Σ term [j](q), 0 ≤ j < K is computed in all 1×K windows). This is done using consecutive

sum in 1×K windows. Next, the PEs in the first 1×K window of each row sum up the values com-
puted by the corresponding PEs in the 1×K windows in their row. This gives the K d 2 values for
the pattern represented in the row. The minimum of these can be found using a data sum with add
replaced by min. Once the new cluster for each pattern is known, it can be broadcast to all the
PEs in the pattern row (Step 6) for later use.

Step 1: Broadcast the K × M cluster center matrix in the top K × M window to the remaining
N /K − 1 K×M windows.

Step 2: The PEs in each K × 1 column window compute term [q], 0 ≤ q < K.

Step 3: The PEs in each 1 × K row window compute, in A, the consecutive sum of term (Chapter
2).

Step 4: The values of A are summed up over the M /K 1×K windows in each row. This results in

d 2(i, k) =
j =0
Σ

M −1

term [k](i, j), 0 ≤ i < N, 0 ≤ k < K.

Step 5: Compute NewCluster (i, 0) = NewCluster [i] by finding q such that
d 2(i, q) =

0 ≤ k < K
min { d 2(i, k)}.

Step 6: Broadcast NewCluster (i, 0) to the remaining M −1 PEs in the i’th row, 0 ≤ i < N.

Program 7.47 Ο(K) memory cluster assignment K ≤ M (Ranka and Sahni 1988d)

Analyzing the complexity of Program 7.47, we see that step 1 takes Ο(log(N /K)) time; steps
2 and 3 each take Ο(K) time; step 4 takes Ο(log(M /K)) time; step 5 takes Ο(logK) time; and step 6
takes Ο(logM) time. So the overall complexity of Program 7.47 is Ο(K + logNMK)).

The algorithm for the case K > M is given in Program 7.48. The strategy is similar to that
for the case K ≤ M and the asymptotic complexity of Program 7.48 is the same as that for Program
7.47.

-- --

-- --

118 CHAPTER 7. CLUSTERING

Step 1: Broadcast the K × M cluster center matrix in the top K × M window to the remaining
N /K − 1 K×M windows.

Step 2: The PEs in each K × 1 column window compute term [q], 0 ≤ q < K.

Step 3: Each row forms a 1×M window for the consecutive sum operation. This operation is to
be repeated K /M times. On the i’th iteration term [iM + j], 0 ≤ j < M of each PE are
involved in the operation. Thus each PE computes K /M A values, A [0 .. K /M − 1].

Step 4: At this time, the PEs in each row have K A values. Each represents a different d 2(i, k)
value. Each PE computes D =

0 ≤ j < M /K
min { A [j]}.

Step 5: PE(i, 0) computes NewCluster [i] by computing the minimum D in its row and the cluster
index corresponding to this.

Step 6: Broadcast NewCluster (i, 0) to the remaining M −1 PEs in the i’th row, 0 ≤ i < N.

Program 7.48 Ο(K) memory cluster assignment K > M (Ranka and Sahni 1988d)

7.41.2.2 Ο(1) Memory Per Processor

Once again, we need to develop different algorithms for the two cases K ≤ M and K > M.
Program 7.49 gives the algorithm for the former case and Program 7.50 for the latter. The com-
plexity of each algorithm is Ο(K + log(NMK)).

Step 1: Broadcast the K × M cluster center matrix in the top K × M window to the remaining
N /K − 1 K×M windows.

Step 2: The PEs in each K×K window perform a distance calculation. The result is left in the
dist registers of the PEs.

Step 3: The dist values in the M /K 1×K windows of each row are summed using a window
sum. The result of this is left in the d 2 registers of the PEs in the first 1×K window of
each row.

Step 4: Compute NewCluster (i, 0) = NewCluster [i] by finding q such that

d 2(i, q) =
0 ≤ k < K

min { d 2(i, k)}.

Step 5: Broadcast NewCluster (i, 0) to the remaining M −1 PEs in the i’th row, 0 ≤ i < N.

Program 7.49 Ο(1) memory cluster assignment K ≤ M (Ranka and Sahni 1988d)

Let us go through the steps of Program 7.49. Recall that this algorithm is for the case K ≤ M
. First, the cluster center window is broadcast such that it resides in all K×M windows of the NM

PE hypercube. The objective of Steps 2 and 3 is to compute in PE(i, j), d 2(i, j) =

q =0
Σ

M −1

(F (i, q) − center (j, q))2 , 0 ≤ i < N, 0 ≤ j < K. In Step 2, PE(i, j) computes in dist (i, j) the sum

-- --

-- --

7.2. NM PROCESSOR ALGORITHMS 119

dist (i, j) =
r =0
Σ

K −1

(F (i, lK + r) − center (j, l +r))2, 0 ≤ i < N, 0≤ j ≤ M

where l= � j /K � . Then, in Step 4, d 2 is computed by adding the dist values in corresponding PEsof the 1×K windows of the 1×M rows. Once d 2 has been computed, the new cluster values areeasily obtained and broadcast to all PEs representing the pattern.

Step 1: Broadcast the K × M cluster center matrix in the top K × M window to the remaining
N /K − 1 K×M windows.

Step 2: In each K×M window regard the K × M cluster center matrix as K /M M×M cluster center
matrices. These will be circulated through the K /M M×M windows of the larger K×M

window. As a result, each M×M cluster center window will visit each M×M PE
window exactly once. Whenever a new M×M cluster center window is receieved, the
M×M PE window does Steps 3 and 4. I.e., these are done a total of K /M times.

Step 3: Each M×M window does a distance computation. Because of the window size used,
each computed distance represents the squared distance between a pattern and a
cluster.

Step 4: Each PE remembers the smallest distance value it has computed so far. It also
remembers the cluster center index that corresponds to this.

Step 5: Compute NewCluster (i, 0) by finding q such that

d 2(i, q) =
0 ≤ k < M

min { d 2(i, k)}

and using the cluster center index remembered by PE(i, q)

Step 6: Broadcast NewCluster (i, 0) to the remaining M −1 PEs in the i’th row, 0 ≤ i < N.

Program 7.50 Ο(1) memory cluster assignment K > M (Ranka and Sahni 1988d)

7.41.3 Cluster Update

For this operation, we assume that PE(i, j) in the top most K×M window has values
FeatureSum (i, j) and Number (i, j) defined as:

FeatureSum (i, j) =
q∈Si

Σ F (q, j), 0 ≤ i ≤ K, 0 ≤ j < M

Number (i, j) = � Si � , 0 ≤i <K, 0 ≤ j < M

The algorithm to update the cluster centers is given in Program 7.51. Steps 1 and 2 are per-
formed in K×M windows. The (i, j) PE in each such window computes the change in
FeatureSum (i, j) and Number (i, j) contributed by the patterns in this window. These two steps can
be restricted to PEs for which NewCluster (i, j) ≠ C (i, j). In steps 3 and 4 the topmost window
accumulates the sum of these changes. Steps 5 through 8 update the clustering data.

For the complexity analysis, we see that Steps 1 and 2 each take Ο(log2K) time while Steps
3 and 4 each take Ο(log(N /K)) time. Steps 5 through 8 take Ο(1) time. The asymptotic complex-
ity of Program 7.51 is therefore Ο(log2K +log (N /K)).

-- --

-- --

120 CHAPTER 7. CLUSTERING

Step 1: PE(i, j) does an SRAW of F (i, j) to the (NewCluster (i, j), j) PE in its K×M window. It
also does an SRAW of −F (i, j) to the (C (i, j), j) PE in its K×M window. Note that both
SRAWs involve data movement in K×1 column windows only. Let the resulting sum in
PE(i, j) be A (i, j).

Step 2: PE(i, j) does an SRAW of +1 to the (NewCluster (i, j), j) PE in its K×M window. It also
does an SRAW of −1 to the (C (i, j), j) PE in its K×M window. Once again both SRAWs
involve data movement in K×1 column windows only. Let the resulting sum in PE(i, j)
be B (i, j).

Step 3: The A values of corresponding PEs in the N /K K×M windows are added using window
sum. The results are in the D registers of the topmost K×M window.

Step 4: The B values of corresponding PEs in the N /K K×M windows are added using window
sum. The results are in the E registers of the topmost K×M window.

Step 5: FeatureSum (i, j) := FeatureSum (i, j) + D(i, j), 0 ≤ i < K, 0 ≤ j < M

Step 6: Number (i, j) := min {∞, Number (i, j) + E (i, j)}, 0 ≤ i < K, 0 ≤ j < M

Step 7: center (i, j) := FeatureSum (i, j)/ Number (i, j), 0 ≤ i < K, 0 ≤ j < M

Step 8: C (i, j) := NewCluster (i, j), 0 ≤ i < K, 0 ≤ j < M

Program 7.51 Cluster updating (Ranka and Sahni 1988d)

Combining this with the complexity of our procedures for cluster reassignment we get
Ο(K + log(NMK)) as the complexity of our algorithms for one pass of Program 7.45. This is the
case regardless of whether the amount of memory available is Ο(K) or Ο(1). The complexity may
be reduced to Ο(log(NMK)) per pass if NMK processors are available (Ranka and Sahni 1988d).

7.42 Clustering On An NCUBE Hypercube

Consider the following two cases for the clustering problem on an NCUBE hypercube:

1. Host-to-host: The pattern and cluster information is initially in the host and the result is to
be left in the host also.

2. Hypercube-to-hypercube: The pattern and cluster information is initially in the hypercube
processors and the result is to be left here.

Let P be the number of hypercube processors. Assume that the N feature vectors that consti-
tute the feature matrix are distributed equally among the P processors and that the center matrix
is located initially at processor 0. Also assume that each processor has enough memory to hold its
share of the pattern feature matrix and the whole cluster center matrix. Program 7.52 gives the
clustering algorithm for the host-to-host case. The algorithm is self explanatory. Steps 1 and 8
are to be omitted in the hypercube-to-hypercube case.

The NCUBE/7 run times for P = 1, 2, 4, 8, 16, 32, 64; N = 512, 1024; M = 20; and
K = 16, 32, 64 for 10 iterations are given in Figure 7.63 for the host-to-host case and in Figure
7.64 for the hypercube-to-hypercube case. The speedup and efficiency for N = 512, K = 32, and

-- --

-- --

7.3. CLUSTERING ON AN NCUBE HYPERCUBE 121

Step 1: Receive partial pattern matrix from host. Processor s receives F [i, j],
s (N /P) ≤ i < (s + 1)(N /P), 0 ≤ s < P. Processor 0 also receives the cluster center matrix.

Step 2: Steps 3 through 7 are repeated iteration number of times.

Step 3: Processor 0 broadcasts the cluster center matrix to all other processors.

Step 4: Each processor calculates the new clusters for each pattern using the cluster center
matrix.

Step 5: Each processor s calculates

T [s][i, j] =
a∈Si

Σ F [a, j] , s (N /P) ≤ i < (s + 1)(N /P), 0 ≤ j < M

N [s][i] =
a∈Si

Σ 1 , s (N /P) ≤ i < (s + 1)(N /P)

where Si denotes the new i’th cluster.

Step 6: At processor 0, the following information is gathered

X [i, j] =
s =0
Σ

P −1

T [s][i, j] , 0 ≤ i < K, 0 ≤ j < M

Y [i] =
s =0
Σ

P −1

N [s][i] , 0 ≤ i < K

This is done using a binary tree scheme. At each stage the processor receiving the
information adds its information to the received information and sends it to its parent.

Step 7: Processor 0 calculates the new cluster center matrix.

Step 8: Each processor sends the information about the final value of Si,
(s (N /P) ≤ i < (s + 1)(N /P)) to the host.

Program 7.52 Host-to-host clustering algorithm for the NCUBE (Ranka and Sahni 1988d)

M = 20 for 10 iterations are given in Figure 7.52. Figure 7.65 gives these figures for the caseN = 1024, K = 32, M = 20, and number of iterations = 10. From Figure 7.52, we see that whenN = 512, we get greater then 80% efficiency so long as the number of processors is no more than16. When P = 64, the efficiency drops to approximately 50%. As one would expect, when N isincreased the efficiency will also increase. With an N of 1024, the efficiency for P = 64 is approxi-mately 60% (since the available memory on a single processor of the NCUBE is insufficient tosolve an N = 1024 instance on one processor, the P = 1 time is estimated from the P = 2 timeusing an efficiency of 0.994. This is the efficiency for the case N = 512).

-- --

-- --

122 CHAPTER 7. CLUSTERING

of clusters

of processors 16 32 64

1 44.188 86.842 171.481
2 22.346 43.659 86.286
4 11.463 22.282 43.921
8 6.080 11.700 22.941

16 3.440 6.504 12.632
32 2.184 4.015 7.675
64 1.632 2.889 5.405

(a) 512 patterns

of clusters

of processors 16 32 64

2 44.519 86.993 171.942
4 22.651 44.053 86.858
8 11.778 22.689 44.510

16 6.390 12.099 23.518
32 3.760 6.912 13.218
64 2.520 4.439 8.278

(b) 1024 patterns
Times are in seconds

Number of features = 20
Number of iterations = 10

Figure 7.63 Host-to-host times

-- --

-- --

7.3. CLUSTERING ON AN NCUBE HYPERCUBE 123

of clusters

of processors 16 32 64

1 44.182 86.568 171.341
2 22.228 43.544 86.175
4 11.303 22.128 43.779
8 5.891 11.516 22.768

16 3.236 6.307 12.450
32 1.959 3.799 7.477
64 1.372 2.641 5.178

(a) 512 patterns

of clusters

of processors 16 32 64

2 44.284 86.760 171.714
4 22.331 43.736 86.549
8 11.405 22.321 44.153

16 5.993 11.709 23.142
32 3.338 6.500 12.823
64 2.062 3.991 7.851

(b) 1024 patterns
Times are in seconds

Number of features = 20
Number of iterations = 10

Figure 7.64 Hypercube-to-hypercube times

-- --

-- --

124 CHAPTER 7. CLUSTERING

-- --

-- --

7.3. CLUSTERING ON AN NCUBE HYPERCUBE 125

-- --

-- --

126 CHAPTER 7. CLUSTERING

-- --

-- --

7.3. CLUSTERING ON AN NCUBE HYPERCUBE 127

Chapter 8
Image Transformations

8.43 Introduction

In this chapter we develop hypercube algorithms for shrinking, expanding, translation, rotation,
and scaling of an N × N image. We assume that N is a power of 2 and that N2 processors are
available. These are viewed as forming an N × N array. Row major indexing is used for SIMD
hypercubes and the Gray code scheme for MIMD hypercubes. The image pixel I [i, j] is mapped
to the hypercube processor in position (i, j), 0 ≤ i, j <N, of the array view of the hypercube.

We shall use slightly modified forms of two of the operations developed in Chapter 2.
These are:

(1) End off shift
The shift operation of Chapter 2 is a wraparound shift in that data from one end of the win-
dow wraps around to the other end during the shift. The wraparound feature of this shift
operation is easily replaced by an end off zero fill feature. In this case, A (qW + j) is replaced
by A (qW + j − i), so long as 0 ≤ j − i < W and by 0 otherwise. This change does not affect
the asymptotic complexity of the shift operation. Let SIMDEShift (A, i, W) and
MIMDEShift (A, i, W), denote the end off shift procedures for SIMD and MIMD hypercubes,
respectively.

(2) Row and column reordering
These are special cases of the combining random access write (RAW) operation. In a row
reordering the destination processor for data in any PE is another PE in the same row.
Hence, it is sufficient for each PE, p, to simply have a value dest (p) which gives the column
index of the destination PE. Furthermore, the dest values in each row of the N × N processor
array are either nondecreasing left to right for all rows or nonincreasing left to right for all
rows. Because of this monotonicity of the dest values, the sort step of the RAW algorithm
may be replaced by a step that ranks and concentrates the data.

When dest is a nonincreasing function the ranking step does a reverse ranking (i.e., right
to left rather than left to right). Alternatively, we can reverse the row in logarithmic time
using the BPC algorithm of Chapter 2.

In case dest (P) is not in the range [0, N − 1], the data from processor P is not routed any-
where. Since the modified RAWs can be done on all rows in parallel, the time required for
row reordering is Ο(d logN) where d is the maximum number of processors in any row that
have the same dest. In case the combining function is an associative operation like min,

-- --

-- --

128 CHAPTER 8. IMAGE TRANSFORMATIONS

max, or add the time can be reduced to Ο(logN).Column reordering is the column analog of row reordering. It is performed in an analo-gous manner.

8.44 Shrinking And Expanding

8.44.1 Problem Formulation

The neighborhood of the image point [i, j] is defined to be the set

nbd (i, j) = { [u, v] � 0 ≤ u < N, 0 ≤ v < N, max{ � u −i � , � v −i � } ≤ 1}

The q −step shrinking of I is defined in (Rosenfeld and Kak 1982 and Rosenfeld 1987) to be
the N×N image Sq such that

Sq[i, j] =
[u, v]∈nbd (i, j)

min {I [u, v]}, q = 1, 0 ≤ i < N, 0 ≤ j < N

and

Sq[i, j] =
[u, v]∈nbd (i, j)

min {Sq −1[u, v]}, q > 1, 0 ≤ i < N, 0 ≤ j < N

Similarly, the q −step expansion of I is defined to be an N×N image Eq such that

Eq[i, j] =
[u, v]∈nbd (i, j)

max {I [u, v]}, q = 1, 0 ≤ i < N, 0 ≤ j < N

and

Eq[i, j] =
[u, v]∈nbd (i, j)

max {Eq −1[u, v]}, q > 1, 0 ≤ i < N, 0 ≤ j < N

When the images are binary, the min and max operators in the above definitions may be
replaced by and and or respectively. Let B2q + 1[i, j] denote the block of pixels

{[u, v] � 0 ≤ u < N, 0 ≤ v < N, max{ � u −i � , � v −j � } ≤ q}

Then nbd (i, j) = B3[i, j]. In (Rosenfeld 1987), it is shown that

Sq[i, j] =
[u, v]∈B 2q + 1(i, j)

min {I[u, v]}, 0 ≤ i < N, 0 ≤ j < N (8.1)

and

Eq[i, j] =
[u, v]∈B 2q + 1(i, j)

max {I[u, v]}, 0 ≤ i < N, 0 ≤ j < N

Our remaining discussion of shrinking and expanding will explicitly consider shrinking
only. Our algorithms for shrinking can be easily transformed to expanding algorithms of the same
complexity. This transformation simply requires the replacement of every min by a max and a
change in the end off shift fill in from ∞ to −∞. In the case of binary images the min and max

-- --

-- --

8.2. SHRINKING AND EXPANDING 129

operators may be replaced by and and or respectively and the end off shift fill in of ∞ and −∞ by 1and 0, respectively.

Let Rq[i, j] be defined as below

Rq[i, j] =
[i, v]∈B 2q + 1(i, j)

min {I[i, v]}, 0 ≤ i < N, 0 ≤ j < N (8.2)

From (8.1), it follows that

Sq[i, j] =
[u, j]∈B 2q + 1(i, j)

min {Rq[u, j]}, 0 ≤ i < N, 0 ≤ j < N (8.3)

When an N×N image is mapped onto an N ×N MIMD or SIMD hypercube using the map-
pings of Chapter 1, the rows and columns of the mappings are symmetric. Consequently, the
algorithms to compute Rq and Sq from (8.2) and (8.3) are very similar. Hence, in the sequel we
consider the computation of Rq only. We assume q = 2k.

8.44.2 MIMD Shrinking

On an MIMD hypercube Rq for q = 2k may be computed using the algorithm of Program
8.53. The computation of R is done in two stages. These are obtained by decomposing (8.2) into

left q[i, j] =

v ≤ i
[i, v]∈B 2q + 1[i, j]

min {I[i, v]}, 0 ≤ i < N, 0 ≤ j < N

right q[i, j] =

v ≥ i
[i, v]∈B 2q + 1[i, j]

min {I[i, v]}, 0 ≤ i < N, 0 ≤ j < N

Rq[i, j] = min { left q[i, j] , right q[i, j] } 0 ≤ i < N, 0 ≤ j < N

One may verify that following the first for loop iteration with i = a, left (p) is the min of the
pixel values in the left 2a processors and that in its own I register, 0 ≤ a < k. To complete the
computation of left (p) we need also to consider the pixel value 2k units to the left and on the same
image row. This is done by a rightward shift of 2k. The shift is done by rows (i.e., blocks of size
N) with a fill in of ∞. A similar argument establishes the correctness of the second stage compu-
tation of right.

Since a power of 2 MIMD shift takes Ο(1) time, it follows that the complexity of procedure
MIMDShrink is Ο(k). Once Rq , q = 2k, has been computed, Sq may be computed using a similar
algorithm.

-- --

-- --

130 CHAPTER 8. IMAGE TRANSFORMATIONS

procedure MIMDShrink;
{Compute Rq for q = 2k on an MIMD hypercube}
begin

{compute min of the left 2k pixels on the same row}
{MIMDEShift does an ∞ fill instead of a 0 fill}
left (p) := I (p);
for i :=0 to k − 1 do

begin
C (p) := left (p);
MIMDEShift (C, 2i, N);

left (p) := min {left (p), C (p)};
end
C (p) := I (p);
MIMDEShift (C, 2k, N);
left (p) := min {left (p), C (p)};

{compute min of the right 2k pixels on the same row}
right (p) := I (p);
for i :=0 to k − 1 do

begin
C (p) := right (p);
MIMDEShift (C, −2i, N);
right (p) := min {right (p), C (p)};

end
C (p) := I (p);
MIMDEShift (C, −2k, N);
right (p) := min {right (p), C (p)};

R (p) := min {left (p), right (p)}
end;

Program 8.53 MIMD computation of Rq (Ranka and Sahni 1989b)

8.44.3 SIMD Shrinking

Since a shift of 2i in a window of size N takes Ο(log(N/2i)) time on an SIMD hypercube, a
simple adaptation of MIMDShrink to SIMD hypercubes will result in an algorithm whose com-
plexity is Ο(klogN). We can do better than this using a different strategy.

The N×N image is mapped onto the N×N hypercube using the row major mapping. Rq for
q = 2k may be computed by considering the N processors that represent a row of the image as
comprised of several blocks of size 2k each (see Figure 8.2).

Each processor p computes

left(p) = minimum of pixel values to the left of p but within the same 2k block

-- --

-- --

8.2. SHRINKING AND EXPANDING 131

p

processors right of p

2 processors processors left of pk

N processors

__

Figure 8.2 2k blocks of processors

right(p) = minimum of pixel values to the right of p but within the same 2k block

Now, Rq(p) is the minimum of:

(a) I(p)
(b) left(p)
(c) right(p)
(d) left(p + q) provided p + q is in the same row
(e) right(p − q) provided p − q is in the same row

Note that this is true even if q is not a power of 2 and we use k = �� log2q �� in the definition

of left and right. left(p) and right(p) for 2k blocks may be computed by first computing these for
20 blocks, then for 21 blocks, then 22 blocks and so on. Let whole (p) be the minimum of all pixels
in the block that currently contains PE p. For 20 blocks, we have

left(p) = right(p) = ∞

whole(p) = I(p)

left 2s −1 block right 2s −1 block

s

__

Figure 8.66 A 2s block of processors

-- --

-- --

132 CHAPTER 8. IMAGE TRANSFORMATIONS

Each 2s block for s > 0 consists of two 2s −1 blocks as shown in Figure 8.66. One is the left2s −1 block and the other the right 2s −1 block. The PEs in the left 2s −1 block have bit s −1 = 0 whilethose in the right one have bit s −1 = 1. Let us use a superscript to denote block size. So, left s(p)denotes left(p) when the block size is 2s. We see that when p is in the left 2s −1 block,
left s(p) = left s −1(p)
right s(p) = min {right s −1(p), whole s −1(p + 2s −1)}
whole s(p) = min {whole s −1(p), whole s −1(p + 2s −1)}

and when p is in the right 2s −1 block,
left s(p) = min {left s −1(p), whole s −1(p − 2s −1)}
right s(p) = right s −1(p)
whole s(p) = min {whole s −1(p), whole s −1(p − 2s −1)}

Program 8.54 implements the strategy just developed. Its complexity is Ο(logN). The algo-
rithm can also be used when q is not a power of 2 by simply defining k = � logq � . The complex-
ity remains Ο(logN).

procedure SIMDShrink;
{Compute Rq for q = 2k on an SIMD hypercube}
begin

{initialize for 20 blocks}
whole (p) := I (p);
left (p) := ∞;
right (p) := ∞;

{compute for 2i +1 blocks}
for i :=0 to k − 1 do
begin

C (p) := whole (p);
C (p) ← C (p (i));
left (p) := min {left (p), C (p)}; (p (i) = 1)
right (p) := min {right (p), C (p)}; (p (i) = 0)

whole (p) := min {whole (p), C (p)};
end

R (p) :=min { I (p), left (p), right (p)}
SIMDEShift (left, −q, N);
SIMDEShift (right, q, N);
R (p) :=min { R (p), left (p), right (p)}

end; {of SIMDShrink}

Program 8.54 SIMD computation of Rq (Ranka and Sahni 1989b)

-- --

-- --

8.3. TRANSLATION 133

8.45 Translation

This operation requires moving the pixel at position [i, j] to the position [i + a, j + b],
0 ≤ i < N, 0 ≤ j < N where a and b are given and assumed to be in the range 0 ≤ a, b ≤N. Translation
may call for image wraparound in case i + a ≥ N or j + b ≥ N. Alternatively pixels that get moved
to a position [c, d] with either c ≥ N or d ≥ N are discarded and pixel positions [i, j] with i < a or
j < b get filled with zeroes. Regardless of which alternative is used, image translation can be
done by first shifting by a along rows (circular shift for wraparound or zero fill right shift for no
wraparound) and then shifting by b along columns. Unless a and b are powers of 2, the time com-
plexity is Ο(logN) on both an SIMD and an MIMD hypercube. When a and b are powers of 2, the
translation takes Ο(1) time on an MIMD hypercube.

8.46 Rotation

The image I is to be rotated θ degrees about the point [a, b] where a and b are integers in the
range [0, N − 1]. Following the rotation, pixel [i, j] of I will be at position [i´, j´] where i´ and j´
are given by Reeves and Francfort (1985)

i´ = � (i − a)cosθ − (j − b)sinθ + a �

j´ = � (i − a)sinθ + (j − b)cosθ + b �

The equations for i´ and j´, may be simplified to

i´ = � icosθ − jsinθ + A � (8.4)

and

j´ = � isinθ + jcosθ + B �

where A = a (1 − cosθ) + bsinθ and B = b (1 − cosθ) − asinθ.

The hypercube rotation algorithm considers several cases for θ. The steps for each of these
cases are developed in the following subsections.

8.46.1 θ = 1800

In this case, i´ = −i + a, and j´ = −j + b. The rotation can be performed as follows:

Step1: [Column reordering]
Each processor, p, sets dest (p) = −i + a where i is the row number of the processor.
Next, a column reordering is done.

Step2: [Row reordering]
Each processor, p, sets dest (p) = −j + b where j is the column number of the processor
and a row reordering is done.

-- --

-- --

134 CHAPTER 8. IMAGE TRANSFORMATIONS

Note that the dest values in each column in Step 1 and those in each row in Step 2 are indecreasing order. Step 1 sends all pixels to their correct destination row while Step 2 sends themto the correct column. Since the dest values are distinct the row and column reordering of steps 1and 2 can be also be done by a reversal followed by a shift. While this is simpler than using themodified RAW scheme discussed earlier, its asymptotic complexity is the same. The complexityof the two step 1800 rotation algorithm is Ο(logN).

8.46.2 θ = +__900

The case θ = 900 and θ = − 900 are quite similar. We explicitly consider only the case
θ = 900. Now, i´ = −j + a + b and j´ = i −a + b .

The steps in the rotation are:

Step 1: [Transpose]
Transpose the image so that I new[i, j] = I old [j, i]

Step 2: [Column Reorder]
Each processor sets dest (p) = a + b − i where i is the row number of the processor. Next,
a column reordering is done.

Step 3: [Shift]
A rightward shift of −a + b is performed on each row of the image.

In a 900 rotation the pixel originally at [i, j] is to be routed to [−j + a + b, i − a + b]. Step 1
routes the pixel to position [j, i]; Step 2 routes it to [a + b −j, i]; and Step 3 to
[a + b − j, i − a + b]. The transpose of Step 1 can be performed in Ο(logN) time using the BPC
algorithm of Chapter 2. The overall complexity is Ο(logN). Once again, the column reordering
of Step 2 can be done by a column reversal followed by a shift. This does not change the asymp-
totic complexity.

8.46.3 � θ � ≤ 450

We explicitly consider the case 0 ≤ θ ≤ 450 only. The case −450 ≤ θ < 0 is similar. The steps
for the case 0 ≤ θ ≤ 450 are:

Step 1: [Column Reorder]
Set dest (p) = � icosθ − jsinθ + A � where i is the row number and j the column number of
processor p. Since j is the same in a column, dest (p) is nondecreasing in each column.
Hence a column reordering can be done. All data with the same destination are routed
to that destination.

Step 2: [Row Reorder]
Set dest (p) = � itanθ + jsecθ − Atanθ + B � where i and j are respectively, the row and
column numbers of processor p. A row reordering is now performed.

Step 3: [Shift]
Pixels that need to be shifted left by one along rows are shifted.

Step 1 sends each pixel to its correct destination row. Since 0 ≤ θ ≤ 450, 1/√� �2 ≤ cosθ ≤ 1.
Hence, each processor can have at most 2 pixels directed to it. The column reordering of Step 1
is done such that both these reach their destination. Following this, the pixel(s) in the processor at
position [i, j] originated in processors in column j and row

cosθ
i + jsinθ − A − δ_______________

-- --

-- --

8.4. ROTATION 135

where 0 ≤ δ < 1 accounts for the ceiling function in (4). From (4), it follows that these pixels areto be routed to the processors in row i and column j = � y � where y is given by
y = (

cosθ
i + jsinθ − A − δ_______________)sinθ + jcosθ + B

= itanθ + j(
cosθ

sin2θ + cos2θ____________)− Atanθ − δtanθ + B

= itanθ + jsecθ − Atanθ + B − δtanθ

In Step 2, the pixels are first routed to the column � itanθ + jsecθ − Atanθ + B � . Then, in Step
3, we account for the δtanθ term in the formula for y. For 0 ≤ θ ≤ 450 , tanθ is in the range [0, 1].
Since 0 ≤ δ < 1, 0 ≤ δtanθ < 1, the pixels need to be shifted leftwards on the rows by at most 1.
Note that since 1 ≤ secθ ≤ √� �2 for 0 ≤ θ ≤ 450, dest (p) is different for different processors on the
same row. One readily sees that Ο(logN) time suffices for the rotation.

8.46.4 0 ≤ θ ≤ 3600

Every θ in the range [0,360] can be cast into one of the forms:

(a) −45 ≤ θ´ ≤ 45
(b) +__90 + θ´, −45 ≤ θ´ ≤ 45

(c) +__180 + θ´, −45 ≤ θ´ ≤ 45

Case (a) was handled in the last subsection. Cases (b) and (c) can be done in two steps.
First a +__900 or a 1800 rotation is done (note that a +1800 and a −1800 rotation are identical). Next
a θ´ rotation is performed. This two step process may introduce some errors because of end off
conditions from the first step. These can be eliminated by implementing all rotations as wra-
paround rotations and then having a final cleanup step to eliminate the undesired wraparound
pixels.

8.47 Scaling

Scaling an image by s, s ≥ 0, around position [a, b] requires moving the pixel at position [i, j] to
the position [i´, j´] such that (Lee, Yalamanchali, and Agarwal 1987):

i´ = � si + a (1 − s) �

j´ = � sj + b (1 − s) �

0 ≤ i, j < N.

In case i´ ≥ N or j´ ≥ N, the pixel is discarded. If two or more pixels get mapped to the same
location then we have two cases:

(1) only one of these is to survive. The surviving pixel is obtained by some associative opera-
tion such as max, min, average etc.

(2) all pixels are to survive.

When s > 1, then in addition to routing each pixel to its destination pixel, it is necessary to recon-
nect the image boundary and fill in the inside of the objects in the image (Lee, Yalamanchali, and
Agarwal 1987). The pixel routing can be done in Ο((logN)/s) time when s < 1 and all pixels to the

-- --

-- --

136 CHAPTER 8. IMAGE TRANSFORMATIONS

same destination are to survive. In all other cases, pixel routing takes Ο(logN) time. The routingstrategy is to perform a row reordering followed by a column reordering. Reconnecting the boun-dary and filling can be done in Ο(logN) time.

-- --

-- --

8.5. SCALING 137

CHAPTER 9
SIMD String Editing

9.48 Introduction

The input to the string editing problem consists of two strings A =a1a2a3 . . . an −1 and
B =b1b2b3 . . . bm −1; and three cost functions C, D, and I where:

C (ai,bj) = cost of changing ai to bj

D (ai) = cost of deleting ai from A

I (bi) = cost of inserting bi into A

Three edit functions: change, delete and insert are available. C, D, and I give the cost of one
application of each of these functions. The cost of a sequence of edit functions is the sum of the
costs of the individual functions in the sequence. In the string edit problem, we are required to
find a minimum cost editing sequence that transforms string A into string B.

The string edit problem is identical to the weighted Levenshtein distance problem (Liu and
Fu 1985). The longest common subsequence problem (Wagner and Fischer 1974) and the time
warping distance problem (Liu and Fu 1985) are special cases of the string edit problem.

9.49 Dynamic Programming Formulation

Wagner and Fischer (1974) have proposed a single processor dynamic programming solution for
the string editing problem. This formulation is in terms of a function cost where cost (i, j) = is the
cost of a minimum cost edit sequence to transform a1a2

 . . . ai into b1b2
 . . . bj

The following recurrence for cost is easily obtained:

cost (i, j) =

�
� �
cost´(i, j)
cost (0, j − 1) + I (bj)
cost (i − 1, 0) + D (ai)
0

i > 0, j > 0
i = 0, j > 0
i > 0, j = 0
i = j = 0

(9.1)

where

-- --

-- --

138 CHAPTER 9. SIMD STRING EDITING

cost´(i, j) = min{cost (i − 1, j) + D (ai)cost(i − 1, j − 1) + C (ai ,bj)cost(i, j − 1) + I (bj)}

Once cost (i, j), 0 ≤ i < n, 0 ≤ j < m has been computed a minimum cost edit sequence may
be found by a simple backward trace from cost (n − 1, m − 1). This backward trace is facilitated by
recording which of the three options for i > 0, j > 0 yielded the minimum for each i and j.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

76543210

3

2

1

0

ji

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 9.67 Lattice graph

The dependencies in the dynamic programming recurrence (9.1) may be represented by a
lattice graph (Figure 9.67). The vertex in position (i, j) of the lattice graph represents entry (i, j)
of the cost matrix. Each edge of the lattice graph is assigned a weight equal to the cost of the
corresponding edit operation. The weights are obtained as follows:

(1) The weight of an edge of type <(i − 1, j) , (i, j)> is D (ai)

(2) An edge of type <(i − 1, j − 1) , (i, j)> has weight C (ai , bj)

(3) The weight of an edge of type <(i, j − 1) , (i, j)> is I (bj)

With this weight assignment, cost (i, j) is the length of a shortest path from vertex (0, 0) to
vertex (i, j), 0 ≤ i < n, 0 ≤ j < m. Using the above dynamic programming recurrence both
cost (n − 1, m − 1) and the actual least cost edit sequence can be found in Ο(nm) time.

-- --

-- --

9.3. SHARED MEMORY PARALLEL ALGORITHM 139

9.50 Shared Memory Parallel Algorithm

9.50.1 Motivation

As noted in the previous section, the string edit problem is really that of finding a shortest
path in a lattice graph. A shortest path in an N vertex graph can be found by repeatedly squaring
the N × N cost matrix of the graph log2N times (Dekel, Nassimi, and Sahni 1981). Using the
matrix multiplication algorithm of Chapter 2 we can square the cost matrix in Ο(logN) time on a
hypercube with N3/logN processors. So computing the square log2N times will take Ο(log2N)
time. Hence we can compute the shortest path in an N vertex graph in Ο(log2N) time with
Ο(N3/logN) processors. Since the string edit graph (Figure 9.67) has Ο(nm) vertices, this strategy
will result in an Ο(log2(nm)) algorithm that requires a hypercube with Ο((nm)3/log(nm)) proces-
sors. The processor-time product of this algorithm is Ο((nm)3log(nm)). The single processor
dynamic programming algorithm has a processor-time product that is only Ο(nm).

Our concern in this chapter is to develop a fast SIMD hypercube string editing algorithm
with a superior processor-time product. We shall do this in two stages (Ranka and Sahni 1988c,
Ibarra, Pong, and Sohn 1988). First we formulate (in this section) a parallel algorithm for a
shared memory parallel computer. Then, in the next section, we map this parallel algorithm on to
an SIMD hypercube. For convenience, we assume n = m = 2q for some natural number q. The
development is easily extended to the case n≠m and also to the case when n and m are not powers
of 2.

Our strategy to find a shortest path from (0, 0) to (n − 1, n − 1) consists of two phases:

Phase 1: Compute cost (n − 1, n − 1)

Phase 2: Trace back to obtain the path

9.50.2 Computing cost (n − 1, n − 1)

The first phase itself is accomplished in two stages as described below.

Phase 1, Stage 1
The lattice graph is decomposed into k × k sublattice graphs for some k that is a power of 2. The
optimal value of k will be determined later. For each k × k sublattice graph the shortest distance
from each vertex on the top and left boundaries to each vertex on the bottom and right boundaries
is found.

Phase 1, Stage 2
The boundary to boundary distances computed in Stage 1 are combined to obtain
cost (n − 1, n − 1).

Figure 9.68 shows a 2a × 2a lattice graph made up of four a × a lattice graphs. The smaller
lattice graphs have been labeled 0 - 3. Let Ti, Bi , Li, and Ri , respectively, denote the top, bottom,
left, and right boundary vertices in the smaller lattice graph i, 0 ≤ i ≤ 3. We shall use the notation
XY (i, j) to refer to the shortest distance from the i’th vertex in boundary X to the j’th vertex in

-- --

-- --

140 CHAPTER 9. SIMD STRING EDITING

2 B3B

0 T1T

00L 1 R1

R332L2

Figure 9.68 An 8 × 8 lattice graph decomposed into 4 4 × 4 subgraphs

boundary Y, X, Y ∈ {Ti , Bi, Li, Ri}. Vertices are numbered 0, ..., a −1 left to right for top and bot-tom boundaries and top to bottom for left and right boundaries. Note that vertex 0 of a top boun-dary is also the vertex 0 of a left boundary. Similarly, vertex a − 1 of a top boundary is vertex 0 ofa right boundary, etc. T0R0(i, j) is the length of a shortest path from the i’th vertex of the topboundary of the lattice graph 0 to the j’th vertex of the right boundary of lattice graph 0.

The boundary distances we are to compute for the 2a × 2a lattice graph are:

T0R1 , T0R3 , T1R1 , T1R3 , T0B2 , T0B3 , T1B2 , T1B3 ,
L0R1 , L0R3 , L2R1 , L2R3 , L0B2 , L0B3 , L2B2 , L2B3

Because of the edge structure of our lattice graph (Figure 9.67) we know that all distances in
L2R1 and T1B2 are ∞. From Figure 9.67, we see that T0R1(i, j) is given by:

T0R1(i, j) = min{
0 ≤ s < a

min {T0R0(i, s) + R0L1(s, s) + L1R1(s, j)}, (9.2)

0 ≤ s < a −1
min {T0R0(i, s) + R0L1(s, s + 1) + L1R1(s + 1, j)}}

Since R0L1(s, s) and R0L1(s, s + 1) are simply edge costs, T0R1(i, j), 0 ≤ i, j < a can be com-
puted if T0R0 and L1R1 are known. T0R0 and L1R1 are boundary distances for a × a lattice sub-
graphs. The computation of T0R3 from a × a boundary distances is more complex. The equations
needed are:

T0R2(i, j) = min{
0 ≤ s < a

min {T0B0(i, s) + B0T2(s, s) + T2R2(s, j)}, (9.3)

0 ≤ s < a −1
min {T0B0(i, s) + B0T2(s, s + 1) + T2R2(s + 1, j)}}

T0R´3(i, j) = min {
0 ≤ s < a
min {T0R2(i, s) + R2L3(s, s) + L3R3(s, j)}, (9.4)

-- --

-- --

9.3. SHARED MEMORY PARALLEL ALGORITHM 141

0 ≤ s < a −1
min {T0R2(i, s) + R2L3(s, s + 1) + L3R3(s + 1, j)}}

T0B1(i, j) = min{
0 ≤ s < a

min {T0R0(i, s) + R0L1(s, s) + L1B1(s, j)}, (9.5)

0 ≤ s < a −1
min {T0R0(i, s) + R0L1(s, s + 1) + L1B1(s + 1, j)}}

T0R´´3(i, j) = min{
0 ≤ s < a

min {T0B1(i, s) + B1T3(s, s) + T3R3(s, j)}, (9.6)

0 ≤ s < a −1
min {T0B1(i, s) + B1T3(s, s + 1) + T3R3(s + 1, j)}}

T0R3(i, j) = min{T0R3´(i, j), T0R´´3(i, j), (9.7)
T0B0(i, a − 1) + B0T3(a − 1, 0) + T3R3(0, j)}

T1R1 and L2B2 for the 2a × 2a graph are the same as for the corresponding a × a graphs. The
equations for T1R3, T0B2, T1B2, T1B3 , L0R1, L2R3, L0B2, and L0B3 the equations are similar to
those for T0R3 . For a 1 × 1 graph,

TR (0, 0) = TB (0, 0) = LR (0, 0) = LB (0, 0) = 0

Hence the boundary distances for any k × k lattice subgraph may be computed by computing
these distances for 2 × 2 subgraphs, then for 4 × 4 subgraphs, then for 8 × 8 subgraphs, till a k × k

lattice graph is reached.

After the boundary distances for each k × k subgraph have been computed, we compute for
each k × k subgraph the shortest distance from vertex (0, 0) (of the whole graph) to each of the
vertices on the top, bottom, left and right boundaries of the k × k subgraph. Figure 9.69 shows an
n × n graph and its composite k × k subgraphs. The figure is for the case n = 4k. The k × k sub-
graphs are labeled a −p.

a 1 b 2 c 3 d 4

e 2 f 3 g 4 h 5

i 3 j 4 k 5 l 6

m 4 n 5 o 6 p 7

(n−1, n−1)

(0,0)

Figure 9.69 An n × n subgraph and its composite k × k subgraphs n = 4k

The shortest distances from (0, 0) to the boundary vertices of (k × k) subgraphs is computed
in several iterations. In iteration i the distances to the boundary vertices of all subgraphs
assigned the number i in Figure 9.69 are computed.

Let TiTi(l, j) be the length of the shortest path from the l’th vertex of the top boundary of the
k × k subgraph i to the j’th vertex of its top boundary, 0 ≤ l ≤ j < k. Clearly,

TiTi(l, j) =
r =l
Σ
j −1

TiTi(r, r + 1) where TiTi(r, r + 1) is the cost of the directed edge between the top

-- --

-- --

142 CHAPTER 9. SIMD STRING EDITING

boundary vertices r and r + 1. Let LiLi(l, j) be the length of the shortest path from the l’th vertexof the left boundary of the k × k subgraph i to the j’th vertex of its left boundary, 0 ≤ l ≤ j < k. We
see that LiLi(l, j) =

r =l
Σ
j −1

LiLi(r, r + 1) where LiLi(r, r + 1) is the cost of the directed edge between the
left boundary vertices r and r + 1. Let Ti(j), Bi(j), Li(j), and Ri(j), respectively, denote the shortestdistance from vertex (0, 0) to the j’th vertex of the top, bottom, left, and right boundaries of thek × k subgraph i. For subgraph a of Figure 9.69, we have:

Ta(j) = TaTa(0, j); La(j) = LaLa(0, j); Ra(j) = TaRa(0, j); Ba(j) = TaBa(0, j)
where TaRa and TaBa are boundary distances that have already been computed. For subgraphs band e of Figure 9.69, we have:

Lb(j) = min{
0 ≤ s ≤ j
min {Ra(s) + RaLb(s, s) + LbLb(s, j)},

0 ≤ s < j
min {Ra(s) + RaLb(s, s + 1) + LbLb(s + 1, j)}}

Tb(j) = Lb(0) + TbTb(0, j)
Rb(j) =

0 ≤ s ≤ j
min {Lb(s) + LbRb(s, j)}

Bb(j) =
0 ≤ s ≤ j
min {Lb(s) + LbBb(s, j)}

Te(j) = min{
0 ≤ s ≤ j
min {Ba(s) + BaTe(s, s) + TeTe(s, j)},

0 ≤ s < j
min {Ba(s) + BaTe(s, s + 1) + TeTe(s + 1, j)}}

Le(j) = Te(0) + LeLe(0, j)
Re(j) =

0 ≤ s ≤ j
min {Te(s) + TeRe(s, j)}

Be(j) =
0 ≤ s ≤ j
min {Te(s) + TeBe(s, j)}

where RaLb and BaTe are edge costs and LbRb , LbBb , TeRe, and TeBe are boundary distances for therespective k × k subgraphs. The last case to consider is that of subgraph f of Figure 9.69. For this,we obtain:
Tf(0) = Lf(0) = min{Ba(k −1) + BaTf(k −1,0),Bb(0) + BbTf(0, 0),Re(0) + ReTf(0, 0)}
Tf(j) = min{Tf(0) + TfTf(0, j),

0 ≤ s ≤ j
min {Bb(s) + BbTf(s, s) + TfTf(s, j)},

0 ≤ s < j
min {Bb(s) + BbTf(s, s + 1) + TfTf(s + 1, j)}} , j > 0

Lf(j) = min{Lf(0) + LfLf(0, j),
0 ≤ s ≤ j
min {Re(s) + ReLf(s, s) + LfLf(s, j)},

0 ≤ s < j
min {Re(s) + ReLf(s, s + 1) + LfLf(s + 1, j)}} , j > 0

Rf(j) = min{
0 ≤ s ≤ j
min {Tf(s) + TfRf(s, j)},

0 ≤ s ≤ j
min {Lf(s) + LfRf(s, j)}}

Bf(j) = min{
0 ≤ s ≤ j
min {Tf(s) + TfBf(s, j)},

0 ≤ s ≤ j
min {Lf(s) + LfBf(s, j)}}

The k × k subgraphs of an n × n lattice graph (Figure 9.69) may be partitioned into four
classes:

(1) Top left corner subgraph (subgraph a of Figure 9.69)

(2) Remaining top boundary subgraphs (subgraphs b, c, and d of Figure 9.69)

(3) Remaining left boundary subgraphs (e, i, and m of Figure 9.69)

(4) All other subgraphs

We see that the formulas obtained above for subgraphs a, b, e, and f can be easily adapted
to cover all subgraphs. A close examination of the formulas for a, b, e, and f reveals the following
computations are not required.

(1) T and L values of top corner subgraph

(2) T values of the remaining top boundary subgraphs

(3) L values of the remaining left boundary subgraphs

(4) B values of the bottom boundary subgraphs

(5) R values of the right boundary subgraphs (excluding R (k − 1) of the bottom right corner sub-
graph).

Note that cost (n − 1, n − 1) = R (k − 1) of the bottom right corner subgraph.

-- --

-- --

9.3. SHARED MEMORY PARALLEL ALGORITHM 143

9.50.3 Traceback

The shortest path from (0, 0) to (n − 1, n − 1) (i.e., the least cost edit sequence) can be
obtained in two stages:

Stage1: Each k × k subgraph determines the vertex (if any) at which this path enters the sub-
graph and the vertex (if any) from which it leaves the subgraph.

Stage2: The subgraphs that have an entry and exit vertex determine a shortest path in the sub-
graph from entry to exit.

9.50.3.1 Subgraph Entry/Exit Vertices

These can be determined easily if with each Li(j), Ti(j), Bi(j), and Ri(j) computed in Section
9.50.2 we record ‘‘how’’ the minimum of the quantities on the right hand side of the respective
equation was achieved. So, when computing Bf(j) we will also record a value
(X, u), X∈{L, T}, 0 ≤ u ≤ j such that Bf(j) = Xf(u) + XfBf(u, j). Using this information, we begin at
Rz(k − 1) where z is the bottom right corner subgraph and work our way back to Ta(0) where a is
the top left subgraph. For the graph of Figure 9.69, beginning at Rp(k − 1) we obtain the entry ver-
tex for subgraph p. From this entry vertex and the recorded information, we obtain the exit vertex
from subgraphs k, o, or l that was used to get to the entry vertex of p. Suppose this exit vertex is
in subgraph l. From Bl we obtain the entry vertex for l and so on.

Because of the edge structure of the graph, exactly one of the subgraphs with any given
numeric label (cf. Figure 9.69) will have an entry and exit vertex. If there are many possible shor-
test paths, a tie is broken arbitrarily at each step.

9.50.3.2 Shortest Path In A Subgraph

This can be computed if during the computation of boundary distances, we record ’how’
each decision is made. Since Ο(k 2 logk) decisions are made, this much memory is needed to
record the decision information. The actual path computation follows a process similar to that
used to compute the entry/exit vertices. Entry/exit points in k /2 × k /2 blocks are found; then in
k /4 × k /4 blocks; etc.

9.51 SIMD Hypercube Mapping

9.51.1 n2p, 1 ≤ p ≤ n Processors

First, consider a hypercube with n2p, 1 ≤p ≤ n processors. Such a hypercube can be viewed
as an n × n × p array. Let PE (u, v, w) denote the processor in position (u, v, w), 0 ≤ u < n, 0 ≤v < n,
0 ≤ w ≤ p of this array.

The n × n lattice graph is initially mapped onto the face (u, v, 0) of the hypercube. This face
is called face 0. PE (u, v, 0) contains the weight of the (at most) three edges coming into vertex
(u, v) of the lattice graph, 0 ≤ u, v < n. Three registers: left, diagonal, and up are used for this

-- --

-- --

144 CHAPTER 9. SIMD STRING EDITING

purpose.
left(u, v, 0) =

�� �
weight ((<u, v − 1>, <u, v>)
0 v > 0

v = 0

diagonal (u, v, 0) =

�� �
weight ((<u − 1, v − 1>, <u, v>)
0 u > 0 and v > 0

u = 0 or v = 0

up(u, v, 0) =

�� �
weight ((<u − 1, v >, <u, v>)
0 u > 0

u = 0

We shall say that processor (u, v, 0) represents vertex (u, v) of the lattice graph.

9.51.1.1 Computing Boundary Distances

Since the computation of the boundary distances for all k × k subgraphs is done in parallel,
we need consider only one of these subgraphs. Under the assumption that k is a power of 2, the
processors

{(u, v, w) � (u, v, 0) represents a vertex (u, v) in the k × k subgraph,
 0 ≤ w < p }

form a k × k × p subhypercube.

k

k

p

Figure 9.70 Decomposition into k × k × p subhypercubes

The computation of the boundary distances for each k × k subgraph will be done by the
corresponding k × k × p subhypercube. To compute the boundary distances for any a × a subgraph
of a k × k subgraph, the corresponding a × a × p subhypercube will be used. Following this compu-
tation, the processors on face 0 of these a × a × p subhypercubes will contain the boundary dis-
tances in register TR, TB, LR, and LB. Specifically, XY (i, j, 0) will be the shortest distance from
the i’th vertex on boundary X to the j’th vertex on boundary Y where X∈{T, L},Y∈{R, B}, and i

and j are relative to the respective a × a × p subhypercube (i.e., the top left corner vertex in each
such hypercube has i = j = 0). When computing for a 2a × 2a subgraph, the initial configuration
for face 0 of a 2a × 2a subhypercube is shown in Figure 9.71 (a). I.e., the TR, TB, LR, and LB

registers of face 0 of each a × a × p subhypercube contain the corresponding boundary distances.

-- --

-- --

9.4. SIMD HYPERCUBE MAPPING 145

Following the computation for the 2a × 2a subgraph the boundary distances are to be distributedas in Figure 9.71. This will result in the correct initial condition for the computation of boundarydistances for 4a × 4a subgraphs.

We explicitly consider only the computation of the new TR values. The computation of the
new TB, LR, and LB values is similar. The computation of the TR values is done in three stages. In
the first stage the processors on face 0 of the top left a × a × p subhypercube compute T0R2; on the
top right subhypercube T0B1; and on the bottom right subhypercube T1R3 (Figure 9.72 (a)). The
distances computed in the remaining two stages are shown in Figure 9.72 (b) and (c).

Stage 1 Computation

-- --

-- --

146 CHAPTER 9. SIMD STRING EDITING

Equations (9.3) and (9.5) will be used to compute T0R2 and T0B1 respectively, The equationfor T1R3 is:
T1R3(i, j) = min{

0 ≤ s < a
min {T1B1(i, s) + B1T3(s, s) + T3R3(s, j)}, (9.8)

0 ≤ s < a − 1
min {T1B1(i, s) + B1T3(s, s + 1) + T3R3(s + 1, j)}}

Equations (9.3), (9.5), and (9.8) may be rewritten into the form:

result (i, j) = min{E (i, j), F (i, j)}

where E (i, j) is the result of the
0 ≤ s < a
min part and F (i, j) that of the

0 ≤ s < a −1
min part. The computation

of E (i, j) and F (i, j) is very similar to the computation of the product, C, of two a × a matrices A

and B. C (i, j) is given by:

-- --

-- --

9.4. SIMD HYPERCUBE MAPPING 147

C (i, j) =
0 ≤ s < a

Σ A (i, s)∗B (s, j)

Replacing + by min and ∗ by +, we get
D (i, j) =

0 ≤ s < a
min {A (i, s) + B (s, i)} (9.9)

If in (9.8), we set A (i, s) = T1B1(i, s) and B(s, j) = B1T3(s, s) + T3R3(s, j) or
A (i, s) = T1B1(i, s) + B1T3(s, s) and B (s, j) = T3R3(s, j), then D (i, j) = E (i, j).

Let MinSum (A, B, D, a) be a hypercube procedure to compute D as in (9.9) in subhyper-
cubes of size a × a × p. Such a procedure is easily obtained from the matrix multiplication pro-
cedure MatrixMultiply by using the above transformation. We assume that MinSum begins with
A (i, j) and B (i, j) in processor (i, j) and leaves D (i, j) in this processor when done.

The algorithm for the stage 1 computation is given in Program 9.55. The procedure
ColumnShift (A, i, W) shifts the data in the columns of a hypercube down by i. For this purpose, the
columns are divided into windows of size W. There is no wraparound and the fill is done using
∞’s. RowShift is analogous to ColumnShift except that it works on rows of a hypercube and does a
leftward shift of i. Both of these procedures are simple adaptations of SIMDShift. The operator ⇐
denotes a data broadcast.

In Step 1, we set up the A and B registers of the processors in squares 0, 1, and 3 (cf Figure
9.72(a)) so that a MinSum (A, B, E, a) will result in E (i, j) as above. For this, we need:

{square 0}
A (i, j, 0) = T0B0(i, j) + B0T2(j, j)
B (i, j, 0) = T2R2(i, j)

{square 1}
A (i, j, 0) = T0R0(i, j)
B (i, j, 0) = R0L1(i, i) + L1B1(i, j)

{square 3} A (i, j, 0) = T1B1(i, j) + B1T3(j, j)
B (i, j, 0) = T3R3(i, j)

Step 1: [Inititalize to compute E (i, j) in register E (i, j, 0)]
{square 0}
C0(0, j, 0) ← up2(0, j, 0), 0 ≤ j < a

C0(i, j, 0) ⇐ C0(0, j, 0), 0 ≤ i, j < a
A0(i, j, 0) := TB0(i, j, 0) + C0(i, j, 0), 0 ≤ i, j < a
B0(i, j, 0) ← TR2(i, j, 0), 0 ≤ i, j < a
{square 1}
A1(i, j, 0) ← TR0(i, j, 0), 0 ≤ i, j < a

C1(i, 0, 0) := left1(i, 0, 0), 0 ≤ i < a
C1(i, j, 0) ⇐ C1(i, 0, 0), 0 ≤ i, j < a
B1(i, j, 0) := C1(i, j, 0) + LB1(i, j, 0), 0 ≤ i, j < a
{square 3}
A3(i, j, 0) ← TB1(i, j, 0), 0 ≤ i, j < a

-- --

-- --

148 CHAPTER 9. SIMD STRING EDITING

C3(0, j, 0) := up3(0, j, 0), 0 ≤ j < aC3(i, j, 0) ⇐ C3(0, j, 0), 0 ≤ i, j < aA3(i, j, 0) := A3(i, j, 0) + C3(i, j, 0), 0 ≤ i, j < aB3(i, j, 0) := TR3(i, j, 0), 0 ≤ i, j < a

Step 2: [Compute E]
MinSum (A, B, E, a)

Step 3: [Initialize for F]
{square 0}
C0(0, j, 0) ← diagonal 2(0, j, 0)
RowShift (C0 , −1, a) {use ∞ fill}
C0(i, j, 0) ⇐ C0(0, j, 0), 0 ≤ i, j < a
A0(i, j, 0) := TB0(i, j, 0) + C0(i, j, 0), 0 ≤ i, j < a
ColumnShift (B0 , −1, a) {use ∞ fill}
{square 1}
C1(i, 0, 0) ← diagonal 1(i, 0, 0), 0 ≤ i < a
C1(i, j, 0) ⇐ C1(i, 0, 0), 0 ≤ i, j < a
B1(i, j, 0) := C1(i, j, 0) + LB1(i, j, 0), 0 ≤ i, j < a
ColumnShift (B0 , −1, a) {use ∞ fill}
{square 3}
A3(i, j, 0) := A3(i, j, 0)−C3(i, j, 0), 0 ≤ i, j, < a
C3(0, j, 0) ← diagonal 3(0, j, 0), 0 ≤ j < a
RowShift (C3 , −1, a) {use ∞ fill}
A3(i, j, 0) := A3(i, j, 0)+C3(i, j, 0), 0 ≤ i, j, < a

ColumnShift (B0 , −1, a) {use ∞ fill}

Step 4: [Compute F]
MinSum (A, B, F, a)

Step5: [Stage 1 Result]
S 1(i, j, 0) := min{E (i, j, 0), F (i, j, 0)}, 0 ≤ i, j < a

Program 9.55 Stage 1 Computation

The notation Xq(i, j, 0) refers to register X of the processor in position (i, j, 0) of square q,
0 ≤ q ≤ 3. So,

C0(0, j, 0) ← up2(0, j, 0)

denotes a data transfer from the up register of the processor in position (0, j, 0) of square 2 to the
C register of the processor in position (0, j, 0) of square 0.

In Step 2, the E values are computed using MinSum. Step 3 sets up the A and B registers for
the computation of F. This results in:

{square 0}
A(i, j, 0) = T0B0(i, j) + B0T2(j, j + 1)
B(i, j, 0) = T2R2(i + 1, j)

-- --

-- --

9.4. SIMD HYPERCUBE MAPPING 149

{square 1}A(i, j, 0) = T0R0(i, j)B(i, j, 0) = R0L1(i, i + 1) + L1B1(i + 1, j)
{square 3}A(i, j, 0) = T1B1(i, j) + B1T3(j, j + 1)B(i, j, 0) = T3R3(i + 1, j)

Note that the RowShifts of C0 and C3 can be done in parallel and the ColumnShifts of B0 , B1 ,
and B3 can also be done in parallel. Steps 4 and 5 complete the Stage 1 computation.

Complexity of Stage 1

Steps 1 and 3 each take Ο(loga) time. This is due to the ⇐ operations and the shifts. The

time for Steps 2 and 4 is Ο(
za

a___ + logza), za = min{a,p}. So, the total Stage 1 time is

(
za

a___ + loga), za = min{a, p}.

Stage 2 Computation

This is very similar to the Stage 1 computation and can be completed in Ο(
za

a___ + loga) time.

Stage 3 Computation

T1R1 can be moved from square 1 to square 2 using two routes by following the path shown
in Figure 9.72(c). The data movements for the computation of T0R3 take Ο(loga) time.

Overall Complexity

The overall time needed to compute boundary distances for a × a subgraphs is

Ο(
za

a___ + loga), za = min{a,p}. The time to compute the boundary distances for all k × k subgraphs

is therefore

Ο(
a = 2, 4, .., k

Σ (
za

a___ + loga)) = O (
p
k__ + log2k)

9.51.1.2 Computing cost (n − 1, n − 1)

The remaining computations needed to obtain cost (n − 1, n − 1) can be performed in

Ο(
k
n__logk) time using only those processors that are on face 0 of the hypercube. First, the k × k

subhypercubes of face 0 compute the LL and TT values. The processor in position (l, j, 0) of a
k × k hypercube computes LL (l, j) and TT (l, j). We describe the computation for TT only. The
computation of LL is similar.

Computing TT

From Section 9.3 and the definition of left (i, j, 0), we see that TT (l, j, 0) =

r =l
Σ
j −1

left(0, r + 1, 0) =
r =l +1
Σ

j

left(0, r, 0). Hence, the TT values may be computed in face 0 using the

-- --

-- --

150 CHAPTER 9. SIMD STRING EDITING

strategy of Program 9.56. The computation of TT is viewed as several prefix sum computations;one for each value of l. Steps 1 and 2 set up each row of the k × k subhypercube so that a prefixsum of the T 1 values on that row will result in the correct TT value. Procedure PrefixSum is a suit-ably modified version of procedure SIMDPrefixSum. Steps 1 and 3 take Ο(logk) time and Step 2takes Ο(1) time.

Step 1: [Broadcast left (0, r, 0) over columns]
T 1(0, r, 0) := left (0, r, 0), 0 ≤ r < k

T 1(s, r, 0) ⇐ T 1(0, r, 0), 0 ≤ s < k

Step 2: [Zero out values not needed]
T 1(l, r, 0) := 0, 0 ≤ r ≤ l < k

Step 3: [Compute TT (l, j, 0)]
PrefixSum (TT, k, T 1) {Prefix sum on rows}

Step4: [Clean up]
TT (l, j, 0) := ∞, 0 ≤ j < l < k

Program 9.56 Computing TT (l, j, 0)

Once the TT and LL values have been computed, we proceed to compute the L, T, B, and R

values defined in Section 9.3. While all the face 0 processors of a k × k × p subhypercube are
involved in the computation of the L, T, B, and R values for that subhypercube, the final values
are stored only in certain processors. The assignment is

B(k − 1, j, 0) = Bi(j)
R(j, k − 1, 0) = Ri(j)
T(0, j, 0) = Ti(j)
L(j, 0, 0) = Li(j)

� �
� 0 ≤ j < k

where i is the label of the corresponding k × k subgraph (Figure 9.69). Since the ideas used in the
computation of L, T, R, and B are quite similar, we describe only the computation of one part of
Lb(j). Specifically, we consider computing

L´b(j) =
0 ≤ s ≤ j
min {Ra(s) + RaLb(s, s) + LbLb(s, j)}

The value L´b(j) will be left in register LX (j, 0, 0) of the k × k subhypercube that represents
subgraph b. The strategy to compute L´b is given in Program 9.57. Following Step 1, we have
R(s, 0, 0) = Ra(s), 0 ≤ s < k. Following Step 2, R (s, j, 0) = Ra(s) + RaLb(s, s). Note that R(s, j, 0) +
LL (s, j, 0) is a term in the min for L´b(j). To compute L´b(j) we need simply find the minimum of
all the R (s, j, 0) + LL (s, j, 0) values in column j. This is true as LL (s, j) = ∞ for s > j. Step 3 com-
putes this minimum in LX (0, j, 0). Step 4 routes the LX values to the proper processors.

Step 1 is a shift of 1 in a window of size 2k. This takes Ο(logk) time. Steps 2 and 3 are
easily seen to take Ο(logk) time. Step 4 is a BPC permutation of LX values and can also be done
in Ο(logk) time. Since the L, B, T, R values of all k × k subgraphs are computed in Ο(n /k) steps
with each step computing these values for some of the k × k subgraphs, the total time taken to

compute the L, B, T, R values for all k × k subgraphs is Ο(
k
n__logk).

-- --

-- --

9.4. SIMD HYPERCUBE MAPPING 151

Step 1: [Bring in Ra values]
Shift in the R values in the 1 × k column of processors to the left of this k × k

subhypercube right by 1. Put the values in the R registers of these processors.

Step 2: [Add with left and row broadcast]
R (s, 0, 0) := R (s, 0, 0) + left(s, 0, 0), 0 ≤ s < k

Broadcast R (s, 0, 0) to R (s, j, 0), 0 ≤ s, j < k

Step 3: [Compute L´b(j) in processor (0, j, 0)]
LX (0, j, 0) :=

0 ≤ s < j
min {R (s, j, 0) + LL (s, j, 0)}

Step 4: [Route to correct processors]
Route LX (0, j, 0), to LX (j, 0, 0), 0 ≤ j < k

Program 9.57 Computing LX

Combining this with the time required to compute the boundary distances, we get
Ο(

p
k__ + log2k +

k
n__logk) as the time taken to compute cost (n − 1, n − 1) beginning with the initial

input data. This is minimum when k is approximately √� �����������nplogn . Substituting this for k, we get
Ο(√

�����

p
nlogn______ + log2n) as the complexity of our algorithm to compute cost (n − 1, n − 1), The

number of processors used is n2p, 1 ≤ p ≤ n.

9.51.1.3 Traceback

When p ≥ logk = log(√� �����������nplogn), Ο(1) memory per processor is enough to remember the
Ο(n2logk) decisions made during the computation of the boundary distances and the further
Ο(n2/k) decisions made to compute cost (n − 1, n − 1) from the boundary distances. The entry/exit

points for all the subgraphs can be computed in Ο(
k
n__logk) time using the latter information. The

paths within each k × k subgraph can be constructed in Ο(log2k) time. So, the traceback takes

Ο(
k
n__logk + log2k) = O (√

�����

p
nlogn______ + log2n) when k = √� �����������nplogn .

When p < logk, we do not have enough memory to save the decisions made during the com-
putation of the boundary distance. However, we do have enough memory to save the later
Ο(n2/k) decisions. Hence, the entry and exit vertices of the k × k subgraphs can still be determined

in Ο(
k
n__logk) time. The shortest path from an entry vertex to an exit vertex of a k × k subgraph

may be found by first modifying the edge costs of each k × k subgraph so that the shortest (0, 0) to
(k − 1, k − 1) path will contain the shortest entry to exit path. Figure 9.73 shows one of the possi-
ble cases for the entry and exit vertices. Edges on the path from (0, 0) to the entry vertex are
given a cost of 0. Also those on the path from the exit vertex to (k − 1, k − 1) are given a cost of 0.
Remaining edges not contained in the rectangle defined by the entry and exit vertices are given a
cost of ∞. As a result of this transformation, finding a shortest entry to exit path is equivalent to
finding a shortest (0, 0) to (k − 1, k − 1) path. This can be done by recursive application of the
algorithm on the k × k subgraphs. So, we compute new boundary distances, new cost (k − 1, k − 1)
values, etc.

-- --

-- --

152 CHAPTER 9. SIMD STRING EDITING

B

A∞∞∞∞∞

∞∞∞∞∞∞∞∞

∞

∞

∞∞∞∞∞∞∞
∞

∞

∞

∞

∞

∞

∞∞

∞

∞

0

0

0

000

A = entry vertex
B = exit vertex

Figure 9.73 Modifying a k × k subgraph

The run time T (n, p) of the trace back when p < logk = log(√
� �����������
nplogn) is

T (n, p) = O(√
�����

p
nlogn______) + T (√

� �����������
nplogn , p)

= O
��

i
Σ
��

p
nlogn______ �	 2i

1___ �	 = O
��
√
�
���

p
nlogn______ �	

So, regardless of whether p ≤ logk or p ≥ logk, the traceback can be completed in

Ο
��
√
�����

p
nlogn______ + log2n �	 time using n2p, 1 ≤ p ≤ n processors and Ο(1) memory per processor.

9.51.2 p2 , nlogn ≤ p2 < n2 Processors

The algorithm for this case may be obtained from that for the case of n2p, 1 ≤ p ≤ n proces-
sors by first setting p to 1 to get the algorithm for the case of n2 processors. This simply requires
eliminating the third dimension in the earlier algorithm and replacing the MinSum procedure with
an equivalent procedure for n2 processors. Next, we use the ideas of Chapter 3 to go from an n2

processor algorithm to a p2 processor algorithm (1 ≤ p ≤ n). This requires us to map each
p
n__ ×

p
n__

subgraph of the n × n lattice graph onto a single processor. Hence, each processor of the p ×p

hypercube contains the information corresponding to an
p
n__ ×

p
n__ subgraph. The algorithm to com-

pute cost (n − 1, n − 1) takes the form given in Program 9.58.

-- --

-- --

9.4. SIMD HYPERCUBE MAPPING 153

Step 1: Each processor computes the boundary distances for its
p
n__ ×

p
n__ subgraph.

Step 2: for a := 1, 2, 4, ..., k /2 do
Each 2a × 2a subhypercube computes the boundary distances for its vertices from
those for its constituent a × a subhypercubes.

Step 3: Combine the boundary distances of k × k subhypercubes.

Program 9.58 Algorithm for p2 , nlogn ≤ p2 ≤ n2 processors

Step 1 is done using the serial dynamic programming algorithm for string editing in eachprocessor. The dynamic programming algorithm is used 2n /p − 1 times; once for each of the2n /p − 1 vertices in the top and left boundaries of the n /p × n /p subgraph. So, in each applicationthe shortest distances from one of these 2n /p − 1 vertices to all 2n /p − 1 vertices in the right andbottom boundaries are found. Since each application of the dynamic programming algorithmtakes Ο(n2/p2) time, the total time for Step 1 is Ο(n3/p3).

Step 2 is done using a modified version of the n2 processor algorithm. This modification is

similar to that described in Chapter 3 for matrix multiplication. The time taken is Ο �����
p
n__ �� 3

Σa ��

= Ο �� k ��
p
n__ �� 3 �� .

The combining of the boundary distances of the k × k subgraphs is done in Ο(p/k) iterations.
Note that k × k subhypercubes form a p /k × p /k hypercube. In each iteration of the Ο(p /k) itera-
tions needed to compute cost (n − 1, n − 1) at most one k × k subhypercube of each column of Fig-
ure 9.74 is active. When p2 < n2, we can put the remaining processors in each column to use. If

p2

n2___ ≤
k
p__ , then we may group the processors in each column such that each group contains

p2

n2___

k × k subhypercubes from the same column. In Figure 9.74, n2/p2 = 4 and p /k = 8. The n2/p2 k × k

subhypercubes in each group may themselves be viewed as an n /p × n /p array (2 × 2 array in Fig-
ure 9.74) which is drawn as a one dimensional array of size n2/p2. The pairs (i, j) outside Figure
9.74 give such an interpretation for the top left group. Hence, we may refer to a processor using
the tuple

[a, b, c, d, e, f]

where (a, b) indexes the processor group, 0 ≤ a < p3 /n2 , 0 ≤ b < p /k; (c, d) indexes a k × k subhy-
percube within a group, 0 ≤ c, d < n/p; and (e, f) indexes a processor within a k × k subhypercube,
0 ≤ e, f < k. For processors in the top left k × k subhypercube of Figure 9.74, a = b = c = d = 0. For
those in the k × k subhypercube below this one, a = b = c = 0, d = 1. For the bottom left k × k

subhypercube of Figure 9.74, a = 1, b = 0, c = d = 1. Each processor in a k × k subhypercube

represents
p2

n2___ (or an n /p × n /p subgraph) vertices of the original n × n lattice graph. Let

(g, h), 0 ≤ g, h < n /p index these vertices. We may use the tuple

[a, b, c, d, e, f , g, h]

to refer to vertex (g, h) of the (e, f) processor in the k × k subhypercube (c, d) of group (a, b). In
the algorithms of Section 1.1 each vertex was represented by a face 0 processor. Now, each

-- --

-- --

154 CHAPTER 9. SIMD STRING EDITING

p/k

p/k

k

k

(1, 1)

(0, 0)

(1, 0)

(0, 1)

group

n2/p2

(c, d)

Figure 9.74 p2 processors, p /k = 8, n2 /p2 = 4

processor contains distances for n2 /p2 of these face 0 processors. Let dist [a, b, c, d, e, f , g, h]denote these distances for processor (g, h) of the (e, f) processor in the k × k subhypercube (c, d)of group (a, b) of face 0. Following step 2 of Program 9.58, dist [a, b, c, d, e, f , g, h] is in proces-
sor [a, b, c, d, e, f]. Using the BPC routing algorithm of Chapter 2 we can, in Ο ��

p2

n2___log
p2

n2k 2_____ ��
time rearrange dist such that dist´[a, b, g, h, e, f , c, d] = dist [a, b, c, d, e, f , g, h]

Now, the n2 /p2 dist values formerly in a single processor have been distributed to the
p2

n2___

corresponding processors in the same group. As a result of this distribution, we can essentailly
use the algorithm of Section 9.4.2 to combine boundary distances in Ο(logn) time per iteration.

So the total Step 3 time becomes Ο ��
p2

n2___log
p2

n2k 2_____ +
k
p__logn �� = Ο ��

p2

n2___logn +
k
p__logn �� (note that

n2k 2 /p2 < p2 < n2). The overall time for Program 9.58 is therefore Ο(k(n/p)3 +
p2

n2___logn +
k
p__logn).

If we set k = (p2 √�������logn)/n3/2 , then since √� �n logn ≤ p, n2/p2 ≤ p /k. Further, with this k the run time

becomes Ο ��
p

n3/2____ √�������logn �� .

The traceback needed to obtain the shortest (0, 0) to (n − 1, n − 1) path can be done in the

above time by either using Ο ��
p2

n2___log
n

p2___ �� memory per processor to store the decisions made dur-

ing steps 1, 2, and 3 of Figure 12 or by using Ο ��
p2

n2___ �� memory per processor to save only the

decisions made in Steps 1 and 3 and recomputing those for Step 2.

-- --

-- --

9.4. SIMD HYPERCUBE MAPPING 155

The complexities of our algorithms for n2p, 1 ≤ p ≤ n and p2 , nlogn ≤ p2 < n2 processors may

be restated as O �� n√
�����

l
logn_____ + log2n

��
for nl, logn ≤ l ≤ n2 processors.

-- --

