numpy.log2() in Python
Last Updated :
29 Nov, 2018
Improve
numpy.log2(arr, out = None, *, where = True, casting = 'same_kind', order = 'K', dtype = None, ufunc 'log1p') :
This mathematical function helps user to calculate Base-2 logarithm of x where x belongs to all the input array elements.
Parameters :
Python3
Output :
Python3
Output :
References :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.exp.html
.
array : [array_like]Input array or object. out : [ndarray, optional]Output array with same dimensions as Input array, placed with result. **kwargs : Allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.Return :
An array with Base-2 logarithmic value of x; where x belongs to all elements of input array.Code 1 : Working
# Python program explaining
# log2() function
import numpy as np
in_array = [1, 3, 5, 2**8]
print ("Input array : ", in_array)
out_array = np.log2(in_array)
print ("Output array : ", out_array)
print("\nnp.log2(4**4) : ", np.log2(4**4))
print("np.log2(2**8) : ", np.log2(2**8))
Input array : [1, 3, 5, 256] Output array : [ 0. 1.5849625 2.32192809 8. ] np.log2(4**4) : 8.0 np.log2(2**8) : 8.0Code 2 : Graphical representation
# Python program showing
# Graphical representation of
# log2() function
import numpy as np
import matplotlib.pyplot as plt
in_array = [1, 1.2, 1.4, 1.6, 1.8, 2]
out_array = np.log2(in_array)
print ("out_array : ", out_array)
plt.plot(in_array, in_array, color = 'blue', marker = "*")
# red for numpy.log2()
plt.plot(out_array, in_array, color = 'red', marker = "o")
plt.title("numpy.log2()")
plt.xlabel("out_array")
plt.ylabel("in_array")
plt.show()
out_array : [ 0. 0.26303441 0.48542683 0.67807191 0.84799691 1. ]
