Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 1;318(Pt 2):637–643. doi: 10.1042/bj3180637

eIF2B, the guanine nucleotide-exchange factor for eukaryotic initiation factor 2. Sequence conservation between the alpha, beta and delta subunits of eIF2B from mammals and yeast.

N T Price 1, H Mellor 1, B L Craddock 1, K M Flowers 1, S R Kimball 1, T Wilmer 1, L S Jefferson 1, C G Proud 1
PMCID: PMC1217679  PMID: 8929216

Abstract

The guanine nucleotide-exchange factor eIF2B mediates the exchange of GDP bound to translation initiation factor eIF2 for GTP. This exchange process is a key regulatory step for the control of translation initiation in eukaryotic organisms. To improve our understanding of the structure, function and regulation of eIF2B, we have obtained and sequenced cDNA species encoding all of its five subunits. Here we report the sequences of eIF2B beta and delta from rat. This paper focuses on sequence similarities between the alpha, beta and delta subunits of mammalian eIF2B. Earlier work showed that the amino acid sequences of the corresponding subunits of eIF2B in the yeast Saccharomyces cerevisiae (GCN3, GCD7 and GCD2) exhibit considerable similarity. We demonstrate that this is also true for the mammalian subunits. Moreover, alignment of the eIF2B alpha, beta and delta sequences from mammals and yeast, along with the sequence of the putative eIF2B alpha subunit from Caenorhabditis elegans and eIF2B delta from Schizosaccharomyces pombe shows that a large number of residues are identical or conserved between the C-terminal regions of all these sequences. This strong sequence conservation points to the likely functional importance of these residues. The implications of this are discussed in the light of results concerning the functions of the subunits of eIF2B in yeast and mammals. Our results also indicate that the large apparent differences in mobility on SDS/PAGE between eIF2B beta and delta subunits from rat and rabbit are not due to differences in their lengths but reflect differences in amino acid composition. We have also examined the relative expression of mRNA species encoding the alpha, beta, delta and epsilon subunits of eIF2B in a range of rat tissues by Northern blot analysis. As might be expected for mRNA species encoding subunits of a heterotrimeric protein, the ratios of expression levels of these subunits to one another did not vary between the different rat tissues examined (with the possible exception of liver). This represents the first analysis of the levels of expression of mRNA species encoding the different subunits of eIF2B.

Full Text

The Full Text of this article is available as a PDF (777.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aroor A. R., Denslow N. D., Singh L. P., O'Brien T. W., Wahba A. J. Phosphorylation of rabbit reticulocyte guanine nucleotide exchange factor in vivo. Identification of putative casein kinase II phosphorylation sites. Biochemistry. 1994 Mar 22;33(11):3350–3357. doi: 10.1021/bi00177a028. [DOI] [PubMed] [Google Scholar]
  2. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991 Jan 10;349(6305):117–127. doi: 10.1038/349117a0. [DOI] [PubMed] [Google Scholar]
  3. Bushman J. L., Asuru A. I., Matts R. L., Hinnebusch A. G. Evidence that GCD6 and GCD7, translational regulators of GCN4, are subunits of the guanine nucleotide exchange factor for eIF-2 in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Mar;13(3):1920–1932. doi: 10.1128/mcb.13.3.1920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cormier P., Osborne H. B., Morales J., Bassez T., Minella O., Poulhe R., Bellé R., Mulner-Lorillon O. Elongation factor 1 contains two homologous guanine-nucleotide exchange proteins as shown from the molecular cloning of beta and delta subunits. Nucleic Acids Res. 1993 Feb 11;21(3):743–743. doi: 10.1093/nar/21.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Craddock B. L., Price N. T., Proud C. G. Cloning and expression of cDNAs for the beta subunit of eukaryotic initiation factor-2B, the guanine nucleotide exchange factor for eukaryotic initiation factor-2. Biochem J. 1995 Aug 1;309(Pt 3):1009–1014. doi: 10.1042/bj3091009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Craddock B. L., Proud C. G. The alpha-subunit of the mammalian guanine nucleotide-exchange factor eIF-2B is essential for catalytic activity in vitro. Biochem Biophys Res Commun. 1996 Mar 27;220(3):843–847. doi: 10.1006/bbrc.1996.0495. [DOI] [PubMed] [Google Scholar]
  7. Dever T. E., Chen J. J., Barber G. N., Cigan A. M., Feng L., Donahue T. F., London I. M., Katze M. G., Hinnebusch A. G. Mammalian eukaryotic initiation factor 2 alpha kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4616–4620. doi: 10.1073/pnas.90.10.4616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dholakia J. N., Francis B. R., Haley B. E., Wahba A. J. Photoaffinity labeling of the rabbit reticulocyte guanine nucleotide exchange factor and eukaryotic initiation factor 2 with 8-azidopurine nucleotides. Identification of GTP- and ATP-binding domains. J Biol Chem. 1989 Dec 5;264(34):20638–20642. [PubMed] [Google Scholar]
  9. Dholakia J. N., Mueser T. C., Woodley C. L., Parkhurst L. J., Wahba A. J. The association of NADPH with the guanine nucleotide exchange factor from rabbit reticulocytes: a role of pyridine dinucleotides in eukaryotic polypeptide chain initiation. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6746–6750. doi: 10.1073/pnas.83.18.6746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dholakia J. N., Wahba A. J. Mechanism of the nucleotide exchange reaction in eukaryotic polypeptide chain initiation. Characterization of the guanine nucleotide exchange factor as a GTP-binding protein. J Biol Chem. 1989 Jan 5;264(1):546–550. [PubMed] [Google Scholar]
  11. Dholakia J. N., Wahba A. J. Phosphorylation of the guanine nucleotide exchange factor from rabbit reticulocytes regulates its activity in polypeptide chain initiation. Proc Natl Acad Sci U S A. 1988 Jan;85(1):51–54. doi: 10.1073/pnas.85.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Flowers K. M., Kimball S. R., Feldhoff R. C., Hinnebusch A. G., Jefferson L. S. Molecular cloning and characterization of cDNA encoding the alpha subunit of the rat protein synthesis initiation factor eIF-2B. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4274–4278. doi: 10.1073/pnas.92.10.4274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hannig E. M., Cigan A. M., Freeman B. A., Kinzy T. G. GCD11, a negative regulator of GCN4 expression, encodes the gamma subunit of eIF-2 in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Jan;13(1):506–520. doi: 10.1128/mcb.13.1.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henderson R. A., Krissansen G. W., Yong R. Y., Leung E., Watson J. D., Dholakia J. N. The delta-subunit of murine guanine nucleotide exchange factor eIF-2B. Characterization of cDNAs predicts isoforms differing at the amino-terminal end. J Biol Chem. 1994 Dec 2;269(48):30517–30523. [PubMed] [Google Scholar]
  15. Hinnebusch A. G. Translational control of GCN4: an in vivo barometer of initiation-factor activity. Trends Biochem Sci. 1994 Oct;19(10):409–414. doi: 10.1016/0968-0004(94)90089-2. [DOI] [PubMed] [Google Scholar]
  16. Janssen G. M., van Damme H. T., Kriek J., Amons R., Möller W. The subunit structure of elongation factor 1 from Artemia. Why two alpha-chains in this complex? J Biol Chem. 1994 Dec 16;269(50):31410–31417. [PubMed] [Google Scholar]
  17. Kimball S. R., Jefferson L. S. Allosteric regulation of eukaryotic initiation factor eIF-2B by adenine nucleotides. Biochem Biophys Res Commun. 1995 Jul 26;212(3):1074–1081. doi: 10.1006/bbrc.1995.2079. [DOI] [PubMed] [Google Scholar]
  18. Kimball S. R., Karinch A. M., Feldhoff R. C., Mellor H., Jefferson L. S. Purification and characterization of eukaryotic translational initiation factor eIF-2B from liver. Biochim Biophys Acta. 1994 Dec 15;1201(3):473–481. doi: 10.1016/0304-4165(94)90079-5. [DOI] [PubMed] [Google Scholar]
  19. Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol. 1989 Nov;9(11):5134–5142. doi: 10.1128/mcb.9.11.5134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mellor H., Flowers K. M., Kimball S. R., Jefferson L. S. Cloning and characterization of a cDNA encoding rat PKR, the double-stranded RNA-dependent eukaryotic initiation factor-2 kinase. Biochim Biophys Acta. 1994 Nov 22;1219(3):693–696. doi: 10.1016/0167-4781(94)90229-1. [DOI] [PubMed] [Google Scholar]
  21. Milburn S. C., Hershey J. W., Davies M. V., Kelleher K., Kaufman R. J. Cloning and expression of eukaryotic initiation factor 4B cDNA: sequence determination identifies a common RNA recognition motif. EMBO J. 1990 Sep;9(9):2783–2790. doi: 10.1002/j.1460-2075.1990.tb07466.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oldfield S., Jones B. L., Tanton D., Proud C. G. Use of monoclonal antibodies to study the structure and function of eukaryotic protein synthesis initiation factor eIF-2B. Eur J Biochem. 1994 Apr 1;221(1):399–410. doi: 10.1111/j.1432-1033.1994.tb18752.x. [DOI] [PubMed] [Google Scholar]
  23. Oldfield S., Proud C. G. Purification, phosphorylation and control of the guanine-nucleotide-exchange factor from rabbit reticulocyte lysates. Eur J Biochem. 1992 Aug 15;208(1):73–81. doi: 10.1111/j.1432-1033.1992.tb17160.x. [DOI] [PubMed] [Google Scholar]
  24. Paddon C. J., Hannig E. M., Hinnebusch A. G. Amino acid sequence similarity between GCN3 and GCD2, positive and negative translational regulators of GCN4: evidence for antagonism by competition. Genetics. 1989 Jul;122(3):551–559. doi: 10.1093/genetics/122.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pathak V. K., Nielsen P. J., Trachsel H., Hershey J. W. Structure of the beta subunit of translational initiation factor eIF-2. Cell. 1988 Aug 26;54(5):633–639. doi: 10.1016/s0092-8674(88)80007-2. [DOI] [PubMed] [Google Scholar]
  26. Price N. T., Francia G., Hall L., Proud C. G. Guanine nucleotide exchange factor for eukaryotic initiation factor-2. Cloning of cDNA for the delta-subunit of rabbit translation initiation factor-2B. Biochim Biophys Acta. 1994 Mar 1;1217(2):207–210. doi: 10.1016/0167-4781(94)90037-x. [DOI] [PubMed] [Google Scholar]
  27. Price N. T., Kimball S. R., Jefferson L. S., Proud C. G. Cloning of cDNA for the gamma-subunit of mammalian translation initiation factor 2B, the guanine nucleotide-exchange factor for eukaryotic initiation factor 2. Biochem J. 1996 Sep 1;318(Pt 2):631–636. doi: 10.1042/bj3180631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Price N., Proud C. The guanine nucleotide-exchange factor, eIF-2B. Biochimie. 1994;76(8):748–760. doi: 10.1016/0300-9084(94)90079-5. [DOI] [PubMed] [Google Scholar]
  29. Singh L. P., Arorr A. R., Wahba A. J. Phosphorylation of the guanine nucleotide exchange factor and eukaryotic initiation factor 2 by casein kinase II regulates guanine nucleotide binding and GDP/GTP exchange. Biochemistry. 1994 Aug 9;33(31):9152–9157. doi: 10.1021/bi00197a018. [DOI] [PubMed] [Google Scholar]
  30. Sprinzl M. Elongation factor Tu: a regulatory GTPase with an integrated effector. Trends Biochem Sci. 1994 Jun;19(6):245–250. doi: 10.1016/0968-0004(94)90149-x. [DOI] [PubMed] [Google Scholar]
  31. Sulston J., Du Z., Thomas K., Wilson R., Hillier L., Staden R., Halloran N., Green P., Thierry-Mieg J., Qiu L. The C. elegans genome sequencing project: a beginning. Nature. 1992 Mar 5;356(6364):37–41. doi: 10.1038/356037a0. [DOI] [PubMed] [Google Scholar]
  32. Vazquez de Aldana C. R., Hinnebusch A. G. Mutations in the GCD7 subunit of yeast guanine nucleotide exchange factor eIF-2B overcome the inhibitory effects of phosphorylated eIF-2 on translation initiation. Mol Cell Biol. 1994 May;14(5):3208–3222. doi: 10.1128/mcb.14.5.3208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weijland A., Parmeggiani A. Why do two EF-Tu molecules act in the elongation cycle of protein biosynthesis? Trends Biochem Sci. 1994 May;19(5):188–193. doi: 10.1016/0968-0004(94)90018-3. [DOI] [PubMed] [Google Scholar]
  34. Wek R. C. eIF-2 kinases: regulators of general and gene-specific translation initiation. Trends Biochem Sci. 1994 Nov;19(11):491–496. doi: 10.1016/0968-0004(94)90136-8. [DOI] [PubMed] [Google Scholar]
  35. Yan R., Rychlik W., Etchison D., Rhoads R. E. Amino acid sequence of the human protein synthesis initiation factor eIF-4 gamma. J Biol Chem. 1992 Nov 15;267(32):23226–23231. [PubMed] [Google Scholar]
  36. van Damme H. T., Amons R., Karssies R., Timmers C. J., Janssen G. M., Möller W. Elongation factor 1 beta of artemia: localization of functional sites and homology to elongation factor 1 delta. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):241–247. doi: 10.1016/0167-4781(90)90174-z. [DOI] [PubMed] [Google Scholar]
  37. van Damme H., Amons R., Janssen G., Möller W. Mapping the functional domains of the eukaryotic elongation factor 1 beta gamma. Eur J Biochem. 1991 Apr 23;197(2):505–511. doi: 10.1111/j.1432-1033.1991.tb15938.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES