Abstract
In trypanosomatids, the majority of the guide (g) RNAs that provide the information for U-insertion/deletion RNA editing are encoded by minicircles that are catenated into large networks. In contrast, in the distantly related cryptobiid Trypanoplasma borreli, gRNA genes appear to reside in large 180-kb noncatenated DNA circles. To shed light on the evolutionary history and function of the minicircle network, we have analyzed minicircle organization in the free-living bodonid Bodo saltans, which is more closely related to trypanosomatids than T. borreli. We identified 1.4-kb circular DNAs as the B. saltans equivalent of minicircles via sequence analysis of 4 complete minicircles, 14 minicircle fragments, and 14 gRNAs. We show that each minicircle harbors two gRNA gene cassettes of opposite polarity residing in variable regions of about 200 nt in otherwise highly conserved molecules. In the conserved region, B. saltans minicircles contain a putative bent helix sequence and a degenerate dodecamer motif (CSB-3). Electron microscopy, sedimentation, and gel electrophoresis analyses showed no evidence for the existence of large minicircle networks in B. saltans, the large majority of the minicircles being present as circular and linear monomers (85-90%) with small amounts of catenated dimers and trimers. Our results provide the first example of a kinetoplastid species with noncatenated, gRNA gene-containing minicircles, which implies that the creation of minicircles and minicircle networks are separate evolutionary events.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alfonzo J. D., Thiemann O., Simpson L. The mechanism of U insertion/deletion RNA editing in kinetoplastid mitochondria. Nucleic Acids Res. 1997 Oct 1;25(19):3751–3759. doi: 10.1093/nar/25.19.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arts G. J., Benne R. Mechanism and evolution of RNA editing in kinetoplastida. Biochim Biophys Acta. 1996 Jun 3;1307(1):39–54. doi: 10.1016/0167-4781(96)00021-8. [DOI] [PubMed] [Google Scholar]
- Avila H. A., Simpson L. Organization and complexity of minicircle-encoded guide RNAs in Trypanosoma cruzi. RNA. 1995 Nov;1(9):939–947. [PMC free article] [PubMed] [Google Scholar]
- Benne R., Van den Burg J., Brakenhoff J. P., Sloof P., Van Boom J. H., Tromp M. C. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986 Sep 12;46(6):819–826. doi: 10.1016/0092-8674(86)90063-2. [DOI] [PubMed] [Google Scholar]
- Birkenmeyer L., Sugisaki H., Ray D. S. Structural characterization of site-specific discontinuities associated with replication origins of minicircle DNA from Crithidia fasciculata. J Biol Chem. 1987 Feb 15;262(5):2384–2392. [PubMed] [Google Scholar]
- Blom D., de Haan A., van den Berg M., Sloof P., Jirku M., Lukes J., Benne R. RNA editing in the free-living bodonid Bodo saltans. Nucleic Acids Res. 1998 Mar 1;26(5):1205–1213. doi: 10.1093/nar/26.5.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borst P., Fase-Fowler F. The maxi-circle of Trypanosoma brucei kinetoplast DNA. Biochim Biophys Acta. 1979 Nov 22;565(1):1–12. doi: 10.1016/0005-2787(79)90078-9. [DOI] [PubMed] [Google Scholar]
- Borst P. Why kinetoplast DNA networks? Trends Genet. 1991 May;7(5):139–141. doi: 10.1016/0168-9525(91)90374-y. [DOI] [PubMed] [Google Scholar]
- Chen J., Rauch C. A., White J. H., Englund P. T., Cozzarelli N. R. The topology of the kinetoplast DNA network. Cell. 1995 Jan 13;80(1):61–69. doi: 10.1016/0092-8674(95)90451-4. [DOI] [PubMed] [Google Scholar]
- Chu G., Vollrath D., Davis R. W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. doi: 10.1126/science.3538420. [DOI] [PubMed] [Google Scholar]
- Clayton D. A., Smith C. A., Jordan J. M., Teplitz M., Vinograd J. Occurrence of complex mitochondrial DNA in normal tissues. Nature. 1968 Dec 7;220(5171):976–979. doi: 10.1038/220976a0. [DOI] [PubMed] [Google Scholar]
- Englund P. T. Free minicircles of kinetoplast DNA in Crithidia fasciculata. J Biol Chem. 1979 Jun 10;254(11):4895–4900. [PubMed] [Google Scholar]
- Fauron C., Casper M., Gao Y., Moore B. The maize mitochondrial genome: dynamic, yet functional. Trends Genet. 1995 Jun;11(6):228–235. doi: 10.1016/s0168-9525(00)89056-3. [DOI] [PubMed] [Google Scholar]
- Fernandes A. P., Nelson K., Beverley S. M. Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11608–11612. doi: 10.1073/pnas.90.24.11608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hajduk S. L., Siqueira A. M., Vickerman K. Kinetoplast DNA of Bodo caudatus: a noncatenated structure. Mol Cell Biol. 1986 Dec;6(12):4372–4378. doi: 10.1128/mcb.6.12.4372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hensgens L. A., Brakenhoff J., De Vries B. F., Sloof P., Tromp M. C., Van Boom J. H., Benne R. The sequence of the gene for cytochrome c oxidase subunit I, a frameshift containing gene for cytochrome c oxidase subunit II and seven unassigned reading frames in Trypanosoma brucei mitochondrial maxi-circle DNA. Nucleic Acids Res. 1984 Oct 11;12(19):7327–7344. doi: 10.1093/nar/12.19.7327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinz S., Göringer H. U. The guide RNA database (3.0). Nucleic Acids Res. 1999 Jan 1;27(1):168–168. doi: 10.1093/nar/27.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jirků M., Kolesnikov A. A., Benada O., Lukes J. Marine fish and ray trypanosomes have large kinetoplast minicircle DNA. Mol Biochem Parasitol. 1995 Jul;73(1-2):279–283. doi: 10.1016/0166-6851(95)00121-g. [DOI] [PubMed] [Google Scholar]
- Kitchin P. A., Klein V. A., Fein B. I., Englund P. T. Gapped Minicircles. A novel replication intermediate of kinetoplast DNA. J Biol Chem. 1984 Dec 25;259(24):15532–15539. [PubMed] [Google Scholar]
- Kleisen C. M., Borst P., Weijers P. J. The structure of kinetoplast DNA. I. Properties of the intact multi-circular complex from Crithidia luciliae. Biochim Biophys Acta. 1975 May 1;390(2):155–167. [PubMed] [Google Scholar]
- Lukes J., Arts G. J., van den Burg J., de Haan A., Opperdoes F., Sloof P., Benne R. Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borreli. EMBO J. 1994 Nov 1;13(21):5086–5098. doi: 10.1002/j.1460-2075.1994.tb06838.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lukes J., Jirkû M., Dolezel D., Kral'ová I., Hollar L., Maslov D. A. Analysis of ribosomal RNA genes suggests that trypanosomes are monophyletic. J Mol Evol. 1997 May;44(5):521–527. doi: 10.1007/pl00006176. [DOI] [PubMed] [Google Scholar]
- Lukescaron J., Jirkû M., Avliyakulov N., Benada O. Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis. EMBO J. 1998 Feb 2;17(3):838–846. doi: 10.1093/emboj/17.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maslov D. A., Avila H. A., Lake J. A., Simpson L. Evolution of RNA editing in kinetoplastid protozoa. Nature. 1994 Mar 24;368(6469):345–348. doi: 10.1038/368345a0. [DOI] [PubMed] [Google Scholar]
- Maslov D. A., Hollar L., Haghighat P., Nawathean P. Demonstration of mRNA editing and localization of guide RNA genes in kinetoplast-mitochondria of the plant trypanosomatid Phytomonas serpens. Mol Biochem Parasitol. 1998 Jun 1;93(2):225–236. doi: 10.1016/s0166-6851(98)00028-0. [DOI] [PubMed] [Google Scholar]
- Maslov D. A., Simpson L. RNA editing and mitochondrial genomic organization in the cryptobiid kinetoplastid protozoan Trypanoplasma borreli. Mol Cell Biol. 1994 Dec;14(12):8174–8182. doi: 10.1128/mcb.14.12.8174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maslov D. A., Yasuhira S., Simpson L. Phylogenetic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences. Protist. 1999 Mar;150(1):33–42. doi: 10.1016/S1434-4610(99)70007-6. [DOI] [PubMed] [Google Scholar]
- Ntambi J. M., Marini J. C., Bangs J. D., Hajduk S. L., Jimenez H. E., Kitchin P. A., Klein V. A., Ryan K. A., Englund P. T. Presence of a bent helix in fragments of kinetoplast DNA minicircles from several trypanosomatid species. Mol Biochem Parasitol. 1984 Jul;12(3):273–286. doi: 10.1016/0166-6851(84)90084-7. [DOI] [PubMed] [Google Scholar]
- Pollard V. W., Rohrer S. P., Michelotti E. F., Hancock K., Hajduk S. L. Organization of minicircle genes for guide RNAs in Trypanosoma brucei. Cell. 1990 Nov 16;63(4):783–790. doi: 10.1016/0092-8674(90)90144-4. [DOI] [PubMed] [Google Scholar]
- Ray D. S. Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes. Mol Cell Biol. 1989 Mar;9(3):1365–1367. doi: 10.1128/mcb.9.3.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray D. S., Hines J. C., Sugisaki H., Sheline C. kDNA minicircles of the major sequence class of C. fasciculata contain a single region of bent helix widely separated from the two origins of replication. Nucleic Acids Res. 1986 Oct 24;14(20):7953–7965. doi: 10.1093/nar/14.20.7953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riley G. R., Corell R. A., Stuart K. Multiple guide RNAs for identical editing of Trypanosoma brucei apocytochrome b mRNA have an unusual minicircle location and are developmentally regulated. J Biol Chem. 1994 Feb 25;269(8):6101–6108. [PubMed] [Google Scholar]
- Shapiro T. A., Englund P. T. The structure and replication of kinetoplast DNA. Annu Rev Microbiol. 1995;49:117–143. doi: 10.1146/annurev.mi.49.100195.001001. [DOI] [PubMed] [Google Scholar]
- Simpson L. Isolation of maxicircle component of kinetoplast DNA from hemoflagellate protozoa. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1585–1588. doi: 10.1073/pnas.76.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson L. The genomic organization of guide RNA genes in kinetoplastid protozoa: several conundrums and their solutions. Mol Biochem Parasitol. 1997 Jun;86(2):133–141. doi: 10.1016/s0166-6851(97)00037-6. [DOI] [PubMed] [Google Scholar]
- Simpson L. The mitochondrial genome of kinetoplastid protozoa: genomic organization, transcription, replication, and evolution. Annu Rev Microbiol. 1987;41:363–382. doi: 10.1146/annurev.mi.41.100187.002051. [DOI] [PubMed] [Google Scholar]
- Stuart K., Allen T. E., Heidmann S., Seiwert S. D. RNA editing in kinetoplastid protozoa. Microbiol Mol Biol Rev. 1997 Mar;61(1):105–120. doi: 10.1128/mmbr.61.1.105-120.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturm N. R., Simpson L. Leishmania tarentolae minicircles of different sequence classes encode single guide RNAs located in the variable region approximately 150 bp from the conserved region. Nucleic Acids Res. 1991 Nov 25;19(22):6277–6281. doi: 10.1093/nar/19.22.6277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thiemann O. H., Maslov D. A., Simpson L. Disruption of RNA editing in Leishmania tarentolae by the loss of minicircle-encoded guide RNA genes. EMBO J. 1994 Dec 1;13(23):5689–5700. doi: 10.1002/j.1460-2075.1994.tb06907.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van der Spek H., Speijer D., Arts G. J., Van den Burg J., Van Steeg H., Sloof P., Benne R. RNA editing in transcripts of the mitochondrial genes of the insect trypanosome Crithidia fasciculata. EMBO J. 1990 Jan;9(1):257–262. doi: 10.1002/j.1460-2075.1990.tb08103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiemer E. A., Hannaert V., van den IJssel P. R., Van Roy J., Opperdoes F. R., Michels P. A. Molecular analysis of glyceraldehyde-3-phosphate dehydrogenase in Trypanoplasma borelli: an evolutionary scenario of subcellular compartmentation in kinetoplastida. J Mol Evol. 1995 Apr;40(4):443–454. doi: 10.1007/BF00164030. [DOI] [PubMed] [Google Scholar]
- Yasuhira S., Simpson L. Guide RNAs and guide RNA genes in the cryptobiid kinetoplastid protozoan, Trypanoplasma borreli. RNA. 1996 Nov;2(11):1153–1160. [PMC free article] [PubMed] [Google Scholar]
- Yasuhira S., Simpson L. Minicircle-encoded guide RNAs from Crithidia fasciculata. RNA. 1995 Aug;1(6):634–643. [PMC free article] [PubMed] [Google Scholar]
- Yurchenko V., Hobza R., Benada O., Lukes J. Trypanosoma avium: large minicircles in the kinetoplast DNA. Exp Parasitol. 1999 Jul;92(3):215–218. doi: 10.1006/expr.1999.4418. [DOI] [PubMed] [Google Scholar]
- de la Cruz V. F., Neckelmann N., Simpson L. Sequences of six genes and several open reading frames in the kinetoplast maxicircle DNA of Leishmania tarentolae. J Biol Chem. 1984 Dec 25;259(24):15136–15147. [PubMed] [Google Scholar]
- van der Spek H., Arts G. J., Zwaal R. R., van den Burg J., Sloof P., Benne R. Conserved genes encode guide RNAs in mitochondria of Crithidia fasciculata. EMBO J. 1991 May;10(5):1217–1224. doi: 10.1002/j.1460-2075.1991.tb08063.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Spek H., Arts G. J., van den Burg J., Sloof P., Benne R. The nucleotide sequence of mitochondrial maxicircle genes of Crithidia fasciculata. Nucleic Acids Res. 1989 Jun 26;17(12):4876–4876. doi: 10.1093/nar/17.12.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]