Abstract
The activin receptor-like kinase 1 gene (ALK-1) is the second locus for the autosomal dominant vascular disease hereditary hemorrhagic telangiectasia (HHT). In this paper we present the genomic structure of the ALK-1 gene, a type I serine-threonine kinase receptor expressed predominantly in endothelial cells. The coding region is contained within nine exons, spanning < 15 kb of genomic DNA. All introns follow the GT-AG rule, except for intron 6, which has a TAG/gcaag 5' splice junction. The positions of introns in the intracellular domain are almost identical to those of the mouse serine-threonine kinase receptor TSK-7L. By sequencing ALK-1 from genomic DNA, mutations were found in six of six families with HHT either shown to link to chromosome 12q13 or in which linkage of HHT to chromosome 9q33 had been excluded. Mutations were also found in three of six patients from families in which available linkage data were insufficient to allow certainty with regard to the locus involved. The high rate of detection of mutations by genomic sequencing of ALK-1 suggests that this will be a useful diagnostic test for HHT2, particularly where preliminary linkage to chromosome 12q13 can be established. In two cases in which premature termination codons were found in genomic DNA, the mutant mRNA was either not present or present at barely detectable levels. These data suggest that mutations in ALK-1 are functionally null alleles.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attisano L., Cárcamo J., Ventura F., Weis F. M., Massagué J., Wrana J. L. Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors. Cell. 1993 Nov 19;75(4):671–680. doi: 10.1016/0092-8674(93)90488-c. [DOI] [PubMed] [Google Scholar]
- Berg J. N., Guttmacher A. E., Marchuk D. A., Porteous M. E. Clinical heterogeneity in hereditary haemorrhagic telangiectasia: are pulmonary arteriovenous malformations more common in families linked to endoglin? J Med Genet. 1996 Mar;33(3):256–257. doi: 10.1136/jmg.33.3.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braverman I. M., Keh A., Jacobson B. S. Ultrastructure and three-dimensional organization of the telangiectases of hereditary hemorrhagic telangiectasia. J Invest Dermatol. 1990 Oct;95(4):422–427. doi: 10.1111/1523-1747.ep12555569. [DOI] [PubMed] [Google Scholar]
- Cheifetz S., Bellón T., Calés C., Vera S., Bernabeu C., Massagué J., Letarte M. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem. 1992 Sep 25;267(27):19027–19030. [PubMed] [Google Scholar]
- Feng X. H., Filvaroff E. H., Derynck R. Transforming growth factor-beta (TGF-beta)-induced down-regulation of cyclin A expression requires a functional TGF-beta receptor complex. Characterization of chimeric and truncated type I and type II receptors. J Biol Chem. 1995 Oct 13;270(41):24237–24245. doi: 10.1074/jbc.270.41.24237. [DOI] [PubMed] [Google Scholar]
- Guttmacher A. E., Marchuk D. A., White R. I., Jr Hereditary hemorrhagic telangiectasia. N Engl J Med. 1995 Oct 5;333(14):918–924. doi: 10.1056/NEJM199510053331407. [DOI] [PubMed] [Google Scholar]
- Gyapay G., Morissette J., Vignal A., Dib C., Fizames C., Millasseau P., Marc S., Bernardi G., Lathrop M., Weissenbach J. The 1993-94 Généthon human genetic linkage map. Nat Genet. 1994 Jun;7(2 Spec No):246–339. doi: 10.1038/ng0694supp-246. [DOI] [PubMed] [Google Scholar]
- Heutink P., Haitjema T., Breedveld G. J., Janssen B., Sandkuijl L. A., Bontekoe C. J., Westerman C. J., Oostra B. A. Linkage of hereditary haemorrhagic telangiectasia to chromosome 9q34 and evidence for locus heterogeneity. J Med Genet. 1994 Dec;31(12):933–936. doi: 10.1136/jmg.31.12.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ioannou P. A., Amemiya C. T., Garnes J., Kroisel P. M., Shizuya H., Chen C., Batzer M. A., de Jong P. J. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet. 1994 Jan;6(1):84–89. doi: 10.1038/ng0194-84. [DOI] [PubMed] [Google Scholar]
- Johnson D. W., Berg J. N., Baldwin M. A., Gallione C. J., Marondel I., Yoon S. J., Stenzel T. T., Speer M., Pericak-Vance M. A., Diamond A. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996 Jun;13(2):189–195. doi: 10.1038/ng0696-189. [DOI] [PubMed] [Google Scholar]
- Johnson D. W., Berg J. N., Gallione C. J., McAllister K. A., Warner J. P., Helmbold E. A., Markel D. S., Jackson C. E., Porteous M. E., Marchuk D. A. A second locus for hereditary hemorrhagic telangiectasia maps to chromosome 12. Genome Res. 1995 Aug;5(1):21–28. doi: 10.1101/gr.5.1.21. [DOI] [PubMed] [Google Scholar]
- Madri J. A., Kocher O., Merwin J. R., Bell L., Tucker A., Basson C. T. Interactions of vascular cells with transforming growth factors-beta. Ann N Y Acad Sci. 1990;593:243–258. doi: 10.1111/j.1749-6632.1990.tb16116.x. [DOI] [PubMed] [Google Scholar]
- McAllister K. A., Baldwin M. A., Thukkani A. K., Gallione C. J., Berg J. N., Porteous M. E., Guttmacher A. E., Marchuk D. A. Six novel mutations in the endoglin gene in hereditary hemorrhagic telangiectasia type 1 suggest a dominant-negative effect of receptor function. Hum Mol Genet. 1995 Oct;4(10):1983–1985. doi: 10.1093/hmg/4.10.1983. [DOI] [PubMed] [Google Scholar]
- McAllister K. A., Grogg K. M., Johnson D. W., Gallione C. J., Baldwin M. A., Jackson C. E., Helmbold E. A., Markel D. S., McKinnon W. C., Murrell J. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994 Dec;8(4):345–351. doi: 10.1038/ng1294-345. [DOI] [PubMed] [Google Scholar]
- McAllister K. A., Lennon F., Bowles-Biesecker B., McKinnon W. C., Helmbold E. A., Markel D. S., Jackson C. E., Guttmacher A. E., Pericak-Vance M. A., Marchuk D. A. Genetic heterogeneity in hereditary haemorrhagic telangiectasia: possible correlation with clinical phenotype. J Med Genet. 1994 Dec;31(12):927–932. doi: 10.1136/jmg.31.12.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald M. T., Papenberg K. A., Ghosh S., Glatfelter A. A., Biesecker B. B., Helmbold E. A., Markel D. S., Zolotor A., McKinnon W. C., Vanderstoep J. L. A disease locus for hereditary haemorrhagic telangiectasia maps to chromosome 9q33-34. Nat Genet. 1994 Feb;6(2):197–204. doi: 10.1038/ng0294-197. [DOI] [PubMed] [Google Scholar]
- Merwin J. R., Anderson J. M., Kocher O., Van Itallie C. M., Madri J. A. Transforming growth factor beta 1 modulates extracellular matrix organization and cell-cell junctional complex formation during in vitro angiogenesis. J Cell Physiol. 1990 Jan;142(1):117–128. doi: 10.1002/jcp.1041420115. [DOI] [PubMed] [Google Scholar]
- Niehrs C. Growth factors. Mad connection to the nucleus. Nature. 1996 Jun 13;381(6583):561–562. doi: 10.1038/381561a0. [DOI] [PubMed] [Google Scholar]
- Piantanida M., Buscarini E., Dellavecchia C., Minelli A., Rossi A., Buscarini L., Danesino C. Hereditary haemorrhagic telangiectasia with extensive liver involvement is not caused by either HHT1 or HHT2. J Med Genet. 1996 Jun;33(6):441–443. doi: 10.1136/jmg.33.6.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plauchu H., de Chadarévian J. P., Bideau A., Robert J. M. Age-related clinical profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet. 1989 Mar;32(3):291–297. doi: 10.1002/ajmg.1320320302. [DOI] [PubMed] [Google Scholar]
- Porteous M. E., Curtis A., Williams O., Marchuk D., Bhattacharya S. S., Burn J. Genetic heterogeneity in hereditary haemorrhagic telangiectasia. J Med Genet. 1994 Dec;31(12):925–926. doi: 10.1136/jmg.31.12.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qian F., Watnick T. J., Onuchic L. F., Germino G. G. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell. 1996 Dec 13;87(6):979–987. doi: 10.1016/s0092-8674(00)81793-6. [DOI] [PubMed] [Google Scholar]
- Reganold J. P., Palmer A. S., Lockhart J. C., Macgregor A. N. Soil quality and financial performance of biodynamic and conventional farms in new zealand. Science. 1993 Apr 16;260(5106):344–349. doi: 10.1126/science.260.5106.344. [DOI] [PubMed] [Google Scholar]
- Schmitt J., Mielke R., Schrewe H. Genomic organization of a mouse type I activin receptor. Biochem Biophys Res Commun. 1995 Aug 4;213(1):211–217. doi: 10.1006/bbrc.1995.2118. [DOI] [PubMed] [Google Scholar]
- Shovlin C. L., Hughes J. M., Tuddenham E. G., Temperley I., Perembelon Y. F., Scott J., Seidman C. E., Seidman J. G. A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q3. Nat Genet. 1994 Feb;6(2):205–209. doi: 10.1038/ng0294-205. [DOI] [PubMed] [Google Scholar]
- Teragaki M., Akioka K., Yasuda M., Ikuno Y., Oku H., Takeuchi K., Takeda T. Hereditary hemorrhagic telangiectasia with growing pulmonary arteriovenous fistulas followed for 24 years. Am J Med Sci. 1988 Jun;295(6):545–547. doi: 10.1097/00000441-198806000-00008. [DOI] [PubMed] [Google Scholar]
- Vase P., Holm M., Arendrup H. Pulmonary arteriovenous fistulas in hereditary hemorrhagic telangiectasia. Acta Med Scand. 1985;218(1):105–109. doi: 10.1111/j.0954-6820.1985.tb08832.x. [DOI] [PubMed] [Google Scholar]
- Vincent P., Plauchu H., Hazan J., Fauré S., Weissenbach J., Godet J. A third locus for hereditary haemorrhagic telangiectasia maps to chromosome 12q. Hum Mol Genet. 1995 May;4(5):945–949. doi: 10.1093/hmg/4.5.945. [DOI] [PubMed] [Google Scholar]
- Yamamoto H., Ueno H., Ooshima A., Takeshita A. Adenovirus-mediated transfer of a truncated transforming growth factor-beta (TGF-beta) type II receptor completely and specifically abolishes diverse signaling by TGF-beta in vascular wall cells in primary culture. J Biol Chem. 1996 Jul 5;271(27):16253–16259. doi: 10.1074/jbc.271.27.16253. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Feng X., We R., Derynck R. Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature. 1996 Sep 12;383(6596):168–172. doi: 10.1038/383168a0. [DOI] [PubMed] [Google Scholar]
- ten Dijke P., Ichijo H., Franzén P., Schulz P., Saras J., Toyoshima H., Heldin C. H., Miyazono K. Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene. 1993 Oct;8(10):2879–2887. [PubMed] [Google Scholar]