Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1996 Feb;58(2):308–316.

Molecular analysis of a series of alleles in humans with reduced activity at the triosephosphate isomerase locus.

M Watanabe 1, B C Zingg 1, H W Mohrenweiser 1
PMCID: PMC1914533  PMID: 8571957

Abstract

Individuals with 50% of expected triosephosphate isomerase (TPI) enzyme activity have been previously identified in families during the screening of approximately 2,000 newborn children for quantitative variation in activity of 12 erythrocyte enzymes. The frequency of the trait was 9/1,713 individuals in the Caucasian population and 7/168 individuals among the African-American population studied. Genetic transmission of the trait was confirmed in all families. The frequency of the presumptive deficiency allele(s) at the TPI locus was greater than expected, given the reported incidence of clinical TPI deficiency. We report the molecular characterization of the variant alleles from seven African-American and three Caucasian individuals in this group of unrelated individuals. Three amino acid substitutions--a Gly-->Ala substitution at residue 72, a Val-->Met at residue 154, and a previously described Glu-->Asp substitution at residue 104--were identified in the Caucasian individuals. The substitutions occur at residues that are not directly involved in the active site but are highly conserved through evolutionary time, suggesting important roles for these residues in maintenance of subunit structure and conformation. The variant allele in the seven African-American individuals had nucleotide changes at positions -8 and -5 (5' of) from the transcription-initiation site. In three of these individuals, an additional T-->G substitution was detected in a TATA box-like sequence located 24 nucleotides 5' of the transcription-initiation site and on the same chromosome as the -5/-8 substitutions. Thus, molecular alterations at the TPI locus were detected in 10 unrelated individuals in whom segregation of a phenotype of reduced TPI activity previously had been identified.

Full text

PDF
308

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahern T. J., Casal J. I., Petsko G. A., Klibanov A. M. Control of oligomeric enzyme thermostability by protein engineering. Proc Natl Acad Sci U S A. 1987 Feb;84(3):675–679. doi: 10.1073/pnas.84.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ainsworth P. J., Surh L. C., Coulter-Mackie M. B. Diagnostic single strand conformational polymorphism, (SSCP): a simplified non-radioisotopic method as applied to a Tay-Sachs B1 variant. Nucleic Acids Res. 1991 Jan 25;19(2):405–406. doi: 10.1093/nar/19.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Albery W. J., Knowles J. R. Evolution of enzyme function and the development of catalytic efficiency. Biochemistry. 1976 Dec 14;15(25):5631–5640. doi: 10.1021/bi00670a032. [DOI] [PubMed] [Google Scholar]
  4. Banner D. W., Bloomer A. C., Petsko G. A., Phillips D. C., Pogson C. I., Wilson I. A., Corran P. H., Furth A. J., Milman J. D., Offord R. E. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature. 1975 Jun 19;255(5510):609–614. doi: 10.1038/255609a0. [DOI] [PubMed] [Google Scholar]
  5. Borchert T. V., Pratt K., Zeelen J. P., Callens M., Noble M. E., Opperdoes F. R., Michels P. A., Wierenga R. K. Overexpression of trypanosomal triosephosphate isomerase in Escherichia coli and characterisation of a dimer-interface mutant. Eur J Biochem. 1993 Feb 1;211(3):703–710. doi: 10.1111/j.1432-1033.1993.tb17599.x. [DOI] [PubMed] [Google Scholar]
  6. Boyer T. G., Krug J. R., Maquat L. E. Transcriptional regulatory sequences of the housekeeping gene for human triosephosphate isomerase. J Biol Chem. 1989 Mar 25;264(9):5177–5187. [PubMed] [Google Scholar]
  7. Boyer T. G., Maquat L. E. Minimal sequence and factor requirements for the initiation of transcription from an atypical, TATATAA box-containing housekeeping promoter. J Biol Chem. 1990 Nov 25;265(33):20524–20532. [PubMed] [Google Scholar]
  8. Brown J. R., Daar I. O., Krug J. R., Maquat L. E. Characterization of the functional gene and several processed pseudogenes in the human triosephosphate isomerase gene family. Mol Cell Biol. 1985 Jul;5(7):1694–1706. doi: 10.1128/mcb.5.7.1694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chang M. L., Artymiuk P. J., Wu X., Hollán S., Lammi A., Maquat L. E. Human triosephosphate isomerase deficiency resulting from mutation of Phe-240. Am J Hum Genet. 1993 Jun;52(6):1260–1269. [PMC free article] [PubMed] [Google Scholar]
  10. Craig L. C., Pirtle I. L., Gracy R. W., Pirtle R. M. Characterization of the transcription unit and two processed pseudogenes of chimpanzee triosephosphate isomerase (TPI). Gene. 1991 Mar 15;99(2):217–227. doi: 10.1016/0378-1119(91)90130-4. [DOI] [PubMed] [Google Scholar]
  11. Daar I. O., Artymiuk P. J., Phillips D. C., Maquat L. E. Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7903–7907. doi: 10.1073/pnas.83.20.7903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Decker R. S., Mohrenweiser H. W. Hominoid triosephosphate isomerase: characterization of the major cell proliferation specific isozyme. Mol Cell Biochem. 1986 Jun;71(1):31–44. doi: 10.1007/BF00219326. [DOI] [PubMed] [Google Scholar]
  13. Eber S. W., Dünnwald M., Heinemann G., Hofstätter T., Weinmann H. M., Belohradsky B. H. Prevalence of partial deficiency of red cell triosephosphate isomerase in Germany--a study of 3000 people. Hum Genet. 1984;67(3):336–339. doi: 10.1007/BF00291364. [DOI] [PubMed] [Google Scholar]
  14. Eriksson A. E., Baase W. A., Matthews B. W. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences. J Mol Biol. 1993 Feb 5;229(3):747–769. doi: 10.1006/jmbi.1993.1077. [DOI] [PubMed] [Google Scholar]
  15. Farnham P. J., Means A. L. Sequences downstream of the transcription initiation site modulate the activity of the murine dihydrofolate reductase promoter. Mol Cell Biol. 1990 Apr;10(4):1390–1398. doi: 10.1128/mcb.10.4.1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kohl L., Callens M., Wierenga R. K., Opperdoes F. R., Michels P. A. Triose-phosphate isomerase of Leishmania mexicana mexicana. Cloning and characterization of the gene, overexpression in Escherichia coli and analysis of the protein. Eur J Biochem. 1994 Mar 1;220(2):331–338. doi: 10.1111/j.1432-1033.1994.tb18629.x. [DOI] [PubMed] [Google Scholar]
  17. Lim W. A., Farruggio D. C., Sauer R. T. Structural and energetic consequences of disruptive mutations in a protein core. Biochemistry. 1992 May 5;31(17):4324–4333. doi: 10.1021/bi00132a025. [DOI] [PubMed] [Google Scholar]
  18. Lolis E., Alber T., Davenport R. C., Rose D., Hartman F. C., Petsko G. A. Structure of yeast triosephosphate isomerase at 1.9-A resolution. Biochemistry. 1990 Jul 17;29(28):6609–6618. doi: 10.1021/bi00480a009. [DOI] [PubMed] [Google Scholar]
  19. Mande S. C., Mainfroid V., Kalk K. H., Goraj K., Martial J. A., Hol W. G. Crystal structure of recombinant human triosephosphate isomerase at 2.8 A resolution. Triosephosphate isomerase-related human genetic disorders and comparison with the trypanosomal enzyme. Protein Sci. 1994 May;3(5):810–821. doi: 10.1002/pro.5560030510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maquat L. E., Chilcote R., Ryan P. M. Human triosephosphate isomerase cDNA and protein structure. Studies of triosephosphate isomerase deficiency in man. J Biol Chem. 1985 Mar 25;260(6):3748–3753. [PubMed] [Google Scholar]
  21. Means A. L., Farnham P. J. Transcription initiation from the dihydrofolate reductase promoter is positioned by HIP1 binding at the initiation site. Mol Cell Biol. 1990 Feb;10(2):653–661. doi: 10.1128/mcb.10.2.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Means A. L., Slansky J. E., McMahon S. L., Knuth M. W., Farnham P. J. The HIP1 binding site is required for growth regulation of the dihydrofolate reductase gene promoter. Mol Cell Biol. 1992 Mar;12(3):1054–1063. doi: 10.1128/mcb.12.3.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Merkle S., Pretsch W. Characterization of triosephosphate isomerase mutants with reduced enzyme activity in Mus musculus. Genetics. 1989 Dec;123(4):837–844. doi: 10.1093/genetics/123.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mohrenweiser H. W., Fielek S. Elevated frequency of carriers for triosephosphate isomerase deficiency in newborn infants. Pediatr Res. 1982 Nov;16(11):960–963. doi: 10.1203/00006450-198211000-00012. [DOI] [PubMed] [Google Scholar]
  25. Mohrenweiser H. W. Functional hemizygosity in the human genome: direct estimate from twelve erythrocyte enzyme loci. Hum Genet. 1987 Nov;77(3):241–245. doi: 10.1007/BF00284477. [DOI] [PubMed] [Google Scholar]
  26. Mohrenweiser H. W., Wurzinger K. H., Neel J. V. Frequency and distribution of rare electrophoretic mobility variants in a population of human newborns in Ann Arbor, Michigan. Ann Hum Genet. 1987 Oct;51(Pt 4):303–316. doi: 10.1111/j.1469-1809.1987.tb01065.x. [DOI] [PubMed] [Google Scholar]
  27. Neel J. V., Satoh C., Goriki K., Asakawa J., Fujita M., Takahashi N., Kageoka T., Hazama R. Search for mutations altering protein charge and/or function in children of atomic bomb survivors: final report. Am J Hum Genet. 1988 May;42(5):663–676. [PMC free article] [PubMed] [Google Scholar]
  28. Old S. E., Landa L. E., Mohrenweiser H. W. Hominoid triosephosphate isomerase: regulation of expression of the proliferation specific isozyme. Mol Cell Biochem. 1989 Aug 15;89(1):73–85. doi: 10.1007/BF00228282. [DOI] [PubMed] [Google Scholar]
  29. Orita M., Suzuki Y., Sekiya T., Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989 Nov;5(4):874–879. doi: 10.1016/0888-7543(89)90129-8. [DOI] [PubMed] [Google Scholar]
  30. Perry B. A., Mohrenweiser H. W. Human triosephosphate isomerase: substitution of Arg for Gly at position 122 in a thermolabile electromorph variant, TPI-Manchester. Hum Genet. 1992 Mar;88(6):634–638. doi: 10.1007/BF02265287. [DOI] [PubMed] [Google Scholar]
  31. Rosa R., Prehu M. O., Calvin M. C., Badoual J., Alix D., Girod R. Hereditary triose phosphate isomerase deficiency: seven new homozygous cases. Hum Genet. 1985;71(3):235–240. doi: 10.1007/BF00284582. [DOI] [PubMed] [Google Scholar]
  32. Rose I. A., Fung W. J., Warms J. V. Proton diffusion in the active site of triosephosphate isomerase. Biochemistry. 1990 May 8;29(18):4312–4317. doi: 10.1021/bi00470a008. [DOI] [PubMed] [Google Scholar]
  33. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  34. Snapka R. M., Sawyer T. H., Barton R. A., Gracy R. W. Comparison of the electrophoretic properties of triosephosphate isomerases of various tissues and species. Comp Biochem Physiol B. 1974 Dec 15;49(4):733–741. doi: 10.1016/0305-0491(74)90259-4. [DOI] [PubMed] [Google Scholar]
  35. Tanaka K. R., Zerez C. R. Red cell enzymopathies of the glycolytic pathway. Semin Hematol. 1990 Apr;27(2):165–185. [PubMed] [Google Scholar]
  36. Weis L., Reinberg D. Transcription by RNA polymerase II: initiator-directed formation of transcription-competent complexes. FASEB J. 1992 Nov;6(14):3300–3309. doi: 10.1096/fasebj.6.14.1426767. [DOI] [PubMed] [Google Scholar]
  37. Wierenga R. K., Noble M. E., Davenport R. C. Comparison of the refined crystal structures of liganded and unliganded chicken, yeast and trypanosomal triosephosphate isomerase. J Mol Biol. 1992 Apr 20;224(4):1115–1126. doi: 10.1016/0022-2836(92)90473-w. [DOI] [PubMed] [Google Scholar]
  38. Wierenga R. K., Noble M. E., Vriend G., Nauche S., Hol W. G. Refined 1.83 A structure of trypanosomal triosephosphate isomerase crystallized in the presence of 2.4 M-ammonium sulphate. A comparison with the structure of the trypanosomal triosephosphate isomerase-glycerol-3-phosphate complex. J Mol Biol. 1991 Aug 20;220(4):995–1015. doi: 10.1016/0022-2836(91)90368-g. [DOI] [PubMed] [Google Scholar]
  39. Yüksel K. U., Gracy R. W. In vitro deamidation of human triosephosphate isomerase. Arch Biochem Biophys. 1986 Aug 1;248(2):452–459. doi: 10.1016/0003-9861(86)90498-4. [DOI] [PubMed] [Google Scholar]
  40. Zingg B. C., Pretsch W., Mohrenweiser H. W. Molecular analysis of four ENU induced triosephosphate isomerase null mutants in Mus musculus. Mutat Res. 1995 May;328(2):163–173. doi: 10.1016/0027-5107(95)00004-3. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES